Clustering Analysis of a Dissimilarity: a Review of Algebraic and Geometric Representation
Tóm tắt
Từ khóa
Tài liệu tham khảo
Alam, M.J., Fink, M., Pupyrev, S. (2016). The bundled crossing number (pp. 399–412). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-50106-2_31 . ISBN 978-3-319-50106-2.
Aronov, B., Erdős, P., Goddard, W., Kleitman, D.J., Klugerman, M., Pach, J., Schulman, L.J. (1994). Crossing families. Combinatorica, 14(2), 127–134. https://doi.org/10.1007/BF01215345 . ISSN 1439-6912.
Bailey, R.F., Newman, M., Stevens, B. (2014). A note on packing spanning trees in graphs and bases in matroids. Australasian Journal of Combinatorics, 59(1), 24–38.
Berry, A., & Bordat, J.-P. (1998). Separability generalizes Dirac’s theorem. Discrete Applied Mathematics, 84(1–3), 43–53. https://doi.org/10.1016/S0166-218X(98)00005-5 . ISSN 0166-218X.
Bertsekas, D.P., & Castañon, D.A. (1992). A forward/reverse auction algorithm for asymmetric assignment problems. Computational Optimization and Applications, 1 (3), 277–297. ISSN 0926-6003.
Blum, N. (2015). Maximum matching in general graphs without explicit consideration of blossoms revisited. CoRR, arXiv: 1509.04927 .
Burkard, R., Deineko, V., van Dal, R., van der Veen, J., Woeginger, G. (1998). Well-solvable special cases of the traveling salesman problem: a survey. SIAM Review, 40(3), 496–546. https://doi.org/10.1137/S0036144596297514 .
Buš, L., & Tvrdík, P. (2009). Towards auction algorithms for large dense assignment problems. Computational Optimization and Applications, 43(3), 411–436. https://doi.org/10.1007/s10589-007-9146-5 . ISSN 0926-6003.
Cabello, S., Colin de Verdière, É., Lazarus, F. (2016). Finding shortest non-trivial cycles in directed graphs on surfaces. Journal of Computational Geometry, 7(1), 123–148.
Castelli Aleardi, L., Fusy, E., Lewiner, T. (2009). Schnyder woods for higher genus triangulated surfaces, with applications to encoding. Discrete and Computational Geometry, 42(3), 489–516. https://doi.org/10.1007/s00454-009-9169-z . https://hal.inria.fr/hal-00712046 . Extended version of the article appeared in the Proc. of the ACM SoCG 2008.
Chambers, E.W., Erickson, J., Nayyeri, A. (2009). Homology flows, cohomology cuts. In Proceedings of the forty-first annual ACM symposium on theory of computing, STOC ’09. https://doi.org/10.1145/1536414.1536453 . ISBN 978-1-60558-506-2. http://doi.acm.org/10.1145/1536414.1536453 (pp. 273–282). New York: ACM.
Deineko, V. (2004). New exponential neighbourhood for polynomially solvable TSPs. Electronic Notes in Discrete Mathematics, 17, 111–115. ISSN 1571-0653. https://doi.org/10.1016/j.endm.2004.03.015 . http://www.sciencedirect.com/science/article/pii/S1571065304010236 .
Deineko, V., Klinz, B., Woeginger, G.J. (2006). Four point conditions and exponential neighborhoods for symmetric TSP. In Proceedings of the seventeenth annual ACM-SIAM symposium on discrete algorithm, SODA ’06. ISBN 0-89871-605-5. http://dl.acm.org/citation.cfm?id=1109557.1109617 (pp. 544–553). Philadelphia: Society for Industrial and Applied Mathematics.
Durocher, S., & Mondal, D. (2015). Plane 3-trees, Embeddability and approximation. SIAM Journal on Discrete Mathematics, 29(1), 405–420. https://doi.org/10.1137/140964710 .
Duxbury, P., Granlund, L., Gujarathi, S., Juhas, P., Billinge, S. (2016). The unassigned distance geometry problem. Discrete Applied Mathematics, 204, 117–132. https://doi.org/10.1016/j.dam.2015.10.029 . ISSN 0166-218X, http://www.sciencedirect.com/science/article/pii/S0166218X15005168 .
Edmonds, J. (1987). Paths, trees, and flowers. In I. Gessel, G.-C. Rota (Eds.), Classic Papers in Combinatorics (pp. 361–379). Boston: Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-4842-8_26 .
Erickson, J., & Whittlesey, K. (2005). Greedy optimal homotopy and homology generators. In Proceedings of the sixteenth annual ACM-SIAM symposium on discrete algorithms, SODA ’05. ISBN 0-89871-585-7. http://dl.acm.org/citation.cfm?id=1070432.1070581 (pp. 1038–1046). Philadelphia: Society for Industrial and Applied Mathematics.
Felsner, S., & Zickfeld, F. (2008). Schnyder woods and orthogonal surfaces. Discrete & Computational Geometry, 40(1), 103–126. https://doi.org/10.1007/s00454-007-9027-9 , ISSN 1432-0444.
Fortin, D. (2017). Robinsonian matrices: recognition challenges. Journal of Classification, 34(2), 191–222.
Fortin, D., & Tseveendorj, I. (2009). A trust branching path heuristic for zero–one programming. European Journal of Operational Research, 197(2), 439–445. https://doi.org/10.1016/j.ejor.2008.06.033 . ISSN 0377-2217. http://www.sciencedirect.com/science/article/pii/S0377221708004967 .
Gonçalves, D., & Lévêque, B. (2012). Toroidal maps: Schnyder woods, orthogonal surfaces and straight-line representations. CoRR, arXiv: 1202.0911 .
Habib, M., McConnell, R., Paul, C., Viennot, L. (2000). Lex-BFS and partition refinement, with applications to transitive orientation, interval graph recognition and consecutive ones testing. Theoretical Computer Science, 234(1–2), 59–84. https://doi.org/10.1016/S0304-3975(97)00241-7 . ISSN 0304-3975.
Hanrot, G., Pujol, X., Stehlé, D. (2011). Algorithms for the shortest and closest lattice vector problems (pp. 159–190). Berlin: Springer.
Holten, D., & van Wijk, J.J. (2009). Force-directed edge bundling for graph visualization. In Proceedings of the 11th Eurographics/IEEE - VGTC conference on visualization, EuroVis’09 (pp. 983–998). Chichester: The Eurographs Association & #38; Wiley #38, DOI https://doi.org/10.1111/j.1467-8659.2009.01450.x , (to appear in print).
Hruz, T., & Fortin, D. (1993). Parallelism in Hermite and Smith normal forms. Technical report, INRIA. http://hal.inria.fr/inria-00074594 .
Johnson, D.B. (1975). Finding all the elementary circuits of a directed graph. SIAM Journal on Computing, 4(1), 77–84. https://doi.org/10.1137/0204007 .
Kaiser, T. (2012). A short proof of the tree-packing theorem. Discrete Mathematics, 312(10), 1689–1691. https://doi.org/10.1016/j.disc.2012.01.020 .
Kolmogorov, V. (2009). Blossom v: a new implementation of a minimum cost perfect matching algorithm. Mathematical Programming Computation, 1(1), 43–67. https://doi.org/10.1007/s12532-009-0002-8 . ISSN 1867-2957.
Kotrbčík, M., & Škoviera, M. (2012). Matchings, cycle bases, and the maximum genus of a graph. The Electronic Journal of Combinatorics, 19(3), 1–12.
Kundu, S. (1974). Bounds on the number of disjoint spanning trees. Journal of Combinatorial Theory, Series B, 17(2), 199–203. https://doi.org/10.1016/0095-8956(74)90087-2 . ISSN 0095-8956. http://www.sciencedirect.com/science/article/pii/0095895674900872 .
Li, H., Li, X., Mao, Y., Yue, J. (2015). Note on the spanning-tree packing number of lexicographic product graphs. Discrete Mathematics, 338(5), 669–673. https://doi.org/10.1016/j.disc.2014.12.007 . ISSN 0012-365X. www.sciencedirect.com/science/article/pii/S0012365X14004543 .
Mohar, B. (2009). The genus crossing number. ARS Mathematica Contemporanea, 2(2). ISSN 1855-3974. http://amc-journal.eu/index.php/amc/article/view/21 .
Newman, M. (1972). Integral matrices. Pure and applied mathematics: a series of monographs and textbooks. New York: Academic Press. ISBN 9780125178501. https://books.google.fr/books?id=bpHglAEACAAJ .
Ren, H., Zhao, H., Li, H. (2009). Fundamental cycles and graph embeddings. Science in China Series A: Mathematics, 52(9), 1920–1926. ISSN 1862-2763. https://doi.org/10.1007/s11425-009-0041-7 .
Schmidt, J.M. (2014). The Mondshein sequence (pp. 967–978). Berlin: Springer.
Schnyder, W. (1989). Planar graphs and poset dimension. Order, 5, 323–343, 12. https://doi.org/10.1007/BF00353652 .
Schulze, M. (2018). The schulze method of voting. CoRR, arXiv: 1804.02973 .
Storjohann, A. (1998). Computing Hermite and Smith normal forms of triangular integer matrices. Linear Algebra and its Applications, 282(1), 25–45. ISSN 0024-3795. https://doi.org/10.1016/S0024-3795(98)10012-5 . http://www.sciencedirect.com/science/article/pii/S0024379598100125 .
Xu, S.-J., Li, X., Liang, R. (2013). Moplex orderings generated by the LexDFS algorithm. Discrete Applied Mathematics, 161(13–14), 2189–2195. ISSN 0166-218X. https://doi.org/10.1016/j.dam.2013.02.028 .