Cluster melting of DNA-actinomycin complexes

Biophysics - Tập 56 - Trang 40-46 - 2011
N. L. Vekshin1
1Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, Russia;

Tóm tắt

Sensitive methods of differential UV spectrophotometry and differential scanning microcalorimetry were used to study the interaction of small and large quantities of the natural antitumor antibiotic actinomycin D with clusters of native and fragmented calf thymus DNA during thermal melting. At micromolar (physiological) concentrations, actinomycin is incorporated in untwisted sites of DNA rather than in the double helix. Actinomycin stabilizes these sites and therefore slightly increases the overall melting temperature of DNA. The antibiotic effectively interacts with the nucleotides of native DNA at a ratio of 1: 868, especially strongly with the clusters of satellite fractions and DNA fragments. At low concentrations, it stabilizes the «loose» bilizes the double helix and causes DNA aggregation.

Tài liệu tham khảo

N. S. Egorov, A. B. Silaev, and G. S. Katrukha, in Polypeptide Antibiotics, Ed. by N. S. Egorov (MGU, Moscow, 1987), pp. 159–204 [in Russian]. G. V. Gursky, Mol. Biol. 3, 749 (1969). N. Vekshin, I. Savintsev, A. Kovalev, et al., J. Phys. Chem. B 105, 8461 (2001). W. Muller and D. M. Crothers, Eur. J. Biochem. 54, 267 (1975). S. Kamitori and F. Takusagawa, J. Am. Chem. Soc. 116, 4154 (1994). H. Robinson, Y.-G. Gao, X.-L. Yang, et al., Biochemistry 40, 5587 (2001). J. G. Snyder, N. G. Hartman, B. L. D’Estantoit, et al., Proc. Natl. Acad. Sci. 86, 3968 (1989). F. M. Chen, C. M. Jones, and Q. L. Johnson, Biochemistry 32, 5554 (1993). I. V. Savintsev and N. L. Vekshin, Mol. Biol. 36, 725 (2002). R. M. Wadkins and T. M. Jovin, Biochemistry 30, 9469 (1991). R. M. Wadkins, B. Vladu, and C. Tunng, Biochemistry 37, 11915 (1998). R. M. Wadkins, C. Tunng, P. M. Vallone, and A. S. Benight, Archiv. Biochem. Biophys. 384, 199 (2000). N. Vekshin and A. Kovalev, J. Biochem. 140, 185 (2006). A. E. Kovalev, A. A. Yakovenko, and N. L. Vekshin, Biofizika 49, 1030 (2004). I. V. Savintsev and N. L. Vekshin, Prikl. BIokhim. Mikrobiol. 40, 421 (2004). B. Crane, C. Hogan, L. Lerman, and I. W. Hunter, Rev. Sci. Instr. 72, 4245 (2001). P. L. Privalov and V. V. Plotnikov, Thermochimica Acta 139, 257 (1989). A. A. Senin, J. Thermal Anal. Calorimetry 62, 153 (2000). K. J. Breslauer, Methods Enzymol. 259, 221 (1985). J. G. Duguid, Biophysical J. 71, 3350 (1996). N. L. Vekshin, Photonics of Biopolymers (Springer, Berlin, 2002). S. Nakano, M. Fujimoto, H. Hara, and N. Sugimoto, Nucl. Acids Res. 27, 2957 (1999). S. A. Potekhin and E. L. Kovrigin, Biofizika 43, 223 (1998). Y. Maeda, K. Nunomura, and E. Ohtsubo, J. Mol. Biol. 215, 321 (1990). J. E. Mayfield, Biochim. Biophys. Acta 477, 97 (1977). W. B. Melchior and F. A. Beland, Chemico-Biological Interactions 49, 177 (1984). A. A. Akhrem, V. T. Andrianov, A. P. Vlasov, et al., Mol. Biol. 19, 623 (1985). A. P. Vlasov, L. I. Yakhontova, and V. T. Andrianov, Biofizika 36, 437 (1991). T. V. Chalikian, J. Volker, G. E. Plum, and K. J. Breslauer, Proc. Natl. Acad. Sci. 96, 7853 (1999). J. Volker, Biopolymers 50, 303 (1999). K. R. Fox and M. J. Waring, Eur. J. Biochem. 145, 579 (1984). N. L. Vekshin, Biophysics of DNA-Actinomycin Nanocomplexes (Foton-Vek, Pushchino, 2010) [in Russian].