Cluster-based GSA: Global sensitivity analysis of models with temporal or spatial outputs using clustering
Tài liệu tham khảo
Bezdek, 1984, Fcm: the fuzzy c-means clustering algorithm, Comput. Geosci., 10, 191, 10.1016/0098-3004(84)90020-7
Bidot, 2018
Campbell, 2015, Current developments in soil organic matter modeling and the expansion of model applications: a review, Environ. Res. Lett., 10, 123004, 10.1088/1748-9326/10/12/123004
Campbell, 2006, Sensitivity analysis when model outputs are functions, Reliab. Eng. Syst. Saf., 91, 1468, 10.1016/j.ress.2005.11.049
Douglas-Smith, 2020, Certain trends in uncertainty and sensitivity analysis: an overview of software tools and techniques, Environ. Model. Software, 124, 104588, 10.1016/j.envsoft.2019.104588
Fenwick, 2014, Quantifying asymmetric parameter interactions in sensitivity analysis: application to reservoir modeling, Math. Geosci., 46, 493, 10.1007/s11004-014-9530-5
Gamboa, 2014, Sensitivity analysis for multidimensional and functional outputs, Electron, J. Statist., 8, 575
Garnier, 2001, Evaluation of a nitrogen transport and transformation model in a bare soil, Eur. J. Soil Sci., 52, 253, 10.1046/j.1365-2389.2001.00374.x
Herman, 2013, Time-varying sensitivity analysis clarifies the effects of watershed model formulation on model behavior, Water Resour. Res., 49, 1400, 10.1002/wrcr.20124
Höppner, 1999
Lamboni, 2019, Multivariate sensitivity analysis: minimum variance unbiased estimators of the first-order and total-effect covariance matrices, Reliab. Eng. Syst. Saf., 187, 67, 10.1016/j.ress.2018.06.004
Lamboni, 2009, Multivariate global sensitivity analysis for dynamic crop models, Field Crop. Res., 113, 312, 10.1016/j.fcr.2009.06.007
Lamboni, 2011, Multivariate sensitivity analysis to measure global contribution of input factors in dynamic models, Reliab. Eng. Syst. Saf., 96, 450, 10.1016/j.ress.2010.12.002
Lemaître, 2014
Massmann, 2014, A new approach to visualizing time-varying sensitivity indices for environmental model diagnostics across evaluation time-scales, Environ. Model. Software, 51, 190, 10.1016/j.envsoft.2013.09.033
Mesgouez, 2017, Use of global sensitivity analysis to assess the soil poroelastic parameter influence, Wave Motion, 72, 377, 10.1016/j.wavemoti.2017.04.001
Monod, 2006, Uncertainty and sensitivity analysis for crop models, 55
Park, 2016, A matlab toolbox for distance-based generalized sensitivity analysis of geoscientific computer experiments, Comput. Geosci., 97, 15, 10.1016/j.cageo.2016.08.021
Pianosi, 2016, Sensitivity analysis of environmental models: a systematic review with practical workflow, Environ. Model. Software, 79, 214, 10.1016/j.envsoft.2016.02.008
Pujol, 2017
Raguet, 2018
Razavi, 2021, The future of sensitivity analysis: an essential discipline for systems modeling and policy support, Environ. Model. Software, 137, 104954, 10.1016/j.envsoft.2020.104954
Saltelli, 2000
Savall, 2019, Sensitivity analysis of spatio-temporal models describing nitrogen transfers, transformations and losses at the landscape scale, Environ. Model. Software, 111, 356, 10.1016/j.envsoft.2018.09.010
Sobol, 1993, Sensitivity estimates for nonlinear mathematical models, Math. Model Civ. Eng., 1, 407
Spear, 1980, Eutrophication in peel inlet–ii. identification of critical uncertainties via generalized sensitivity analysis, Water Res., 14, 43, 10.1016/0043-1354(80)90040-8
Varella, 2010, Global sensitivity analysis measures the quality of parameter estimation: the case of soil parameters and a crop model, Environ. Model. Software, 25, 310, 10.1016/j.envsoft.2009.09.012
Wei, 2015, Variable importance analysis: a comprehensive review, Reliab. Eng. Syst. Saf., 142, 399, 10.1016/j.ress.2015.05.018
Xiao, 2018, Multivariate global sensitivity analysis for dynamic models based on wavelet analysis, Reliab. Eng. Syst. Saf., 170, 20, 10.1016/j.ress.2017.10.007
Xu, 2005, Survey of clustering algorithms, IEEE Trans. Neural Network., 16, 645, 10.1109/TNN.2005.845141
Xu, 2019, Generalized sensitivity indices based on vector projection for multivariate output, Appl. Math. Model., 66, 592, 10.1016/j.apm.2018.10.009