Cloudy-sky land surface temperature from VIIRS and MODIS satellite data using a surface energy balance-based method
Tài liệu tham khảo
Arboleda, 2017, Continuous monitoring of evapotranspiration (ET) overview of LSA-SAF evapotranspiration products, Rem. Sens. Agric. Ecosyst. Hydrol., Xix, 10421
Augustine, 2000, SURFRAD - A national surface radiation budget network for atmospheric research, Bull. Am. Meteorol. Soc., 81, 2341, 10.1175/1520-0477(2000)081<2341:SANSRB>2.3.CO;2
Bishop, 2001, An introduction to the kalman filter, Proc. SIGGRAPH Course, 8, 41
CERES_Team
Chen, 2020, Evolution of evapotranspiration models using thermal and shortwave remote sensing data, Remote Sens. Environ., 237, 111594, 10.1016/j.rse.2019.111594
Chen, 2011, A simple retrieval method of land surface temperature from AMSR-E passive microwave data—A case study over southern China during the strong snow disaster of 2008, Int. J. Appl. Earth Obs. Geoinf., 13, 140
Cheng, 2015, Estimating the hemispherical broadband longwave emissivity of global vegetated surfaces using a radiative transfer model, IEEE Trans. Geosci. Remote Sens., 54, 905, 10.1109/TGRS.2015.2469535
Das, 2017, A deep-learning-based forecasting ensemble to predict missing data for remote sensing analysis, IEEE J. Select. Top. Appl. Earth Observ. Remote Sens., 10, 5228, 10.1109/JSTARS.2017.2760202
Dash, 2002, Land surface temperature and emissivity estimation from passive sensor data: theory and practice-current trends, Int. J. Remote Sens., 23, 2563, 10.1080/01431160110115041
Doelling, 2016, Advances in geostationary-derived longwave fluxes for the CERES synoptic (SYN1deg) product, J. Atmos. Ocean. Technol., 33, 503, 10.1175/JTECH-D-15-0147.1
Duan, 2017, A framework for the retrieval of all-weather land surface temperature at a high spatial resolution from polar-orbiting thermal infrared and passive microwave data, Remote Sens. Environ., 195, 107, 10.1016/j.rse.2017.04.008
Fily, 2003, A simple retrieval method for land surface temperature and fraction of water surface determination from satellite microwave brightness temperatures in sub-arctic areas, Remote Sens. Environ., 85, 328, 10.1016/S0034-4257(03)00011-7
Fu, 2019, A physical model-based method for retrieving urban land surface temperatures under cloudy conditions, Remote Sens. Environ., 230, 111191, 10.1016/j.rse.2019.05.010
Fu, 1997, Multiple scattering parameterization in thermal infrared radiative transfer, J. Atmos. Sci., 54, 2799, 10.1175/1520-0469(1997)054<2799:MSPITI>2.0.CO;2
Galantowicz, 2011, Subsurface emission effects in AMSR-E measurements: Implications for land surface microwave emissivity retrieval, J. Geophys. Res.-Atmos., 116
Gao, 2007, A practical method for retrieving land surface temperature from AMSR-E over the amazon forest, IEEE Trans. Geosci. Remote Sens., 46, 193, 10.1109/TGRS.2007.906478
Hansen, 2010, Global surface temperature change, Rev. Geophys., 48, 10.1029/2010RG000345
Hersbach, 2020, The ERA5 global reanalysis, Q. J. R. Meteorol. Soc., 146, 1999, 10.1002/qj.3803
Holmes, 2009, Land surface temperature from Ka band (37 GHz) passive microwave observations, J. Geophys. Res.-Atmos., 114
Hulley, 2016, Moderate resolution imaging Spectroradiometer (MODIS) land surface temperature and emissivity product (MxD21) algorithm theoretical basis document Collection-6, JPL Publ., 12
Imaoka, 2010, Instrument performance and calibration of AMSR-E and AMSR2, Int. Archiv. Photogr. Rem. Sens. Spat. Inform. Sci., 38, 13
Islam, 2016, A physics-based algorithm for the simultaneous retrieval of land surface temperature and emissivity from VIIRS thermal infrared data, IEEE Trans. Geosci. Remote Sens., 55, 563, 10.1109/TGRS.2016.2611566
Jia, 2016, Validation and spatiotemporal analysis of CERES surface net radiation product, Remote Sens., 8, 90, 10.3390/rs8020090
Jia, 2018, Comprehensive assessment of global surface net radiation products and uncertainty analysis, J. Geophys. Res.-Atmos., 123, 1970, 10.1002/2017JD027903
Jia, 2020, Air pollution slows down surface warming over the Tibetan plateau, Atmos. Chem. Phys., 20, 881, 10.5194/acp-20-881-2020
Jiang, 2015, Empirical estimation of daytime net radiation from shortwave radiation and ancillary information, Agric. Forest Meteorol., 211–212, 23, 10.1016/j.agrformet.2015.05.003
Jiang, 2016, GLASS daytime all-wave net radiation product: algorithm development and preliminary validation, Remote Sens., 8, 222, 10.3390/rs8030222
Jin, 2000, Interpolation of surface radiative temperature measured from polar orbiting satellites to a diurnal cycle: 2. Cloudy-pixel treatment, J. Geophys. Res.-Atmos., 105, 4061, 10.1029/1999JD901088
Jin, 2000, A generalized algorithm for retrieving cloudy sky skin temperature from satellite thermal infrared radiances, J. Geophys. Res.-Atmos., 105, 27037, 10.1029/2000JD900318
Kato, 2018, Surface irradiances of edition 4.0 clouds and the Earth’s radiant energy system (CERES) energy balanced and filled (EBAF) data product, J. Clim., 31, 4501, 10.1175/JCLI-D-17-0523.1
Kou, 2016, Estimation of land surface temperature through blending MODIS and AMSR-E data with the Bayesian maximum entropy method, Remote Sens., 8, 105, 10.3390/rs8020105
Li, 2013, Satellite-derived land surface temperature: current status and perspectives, Remote Sens. Environ., 131, 14, 10.1016/j.rse.2012.12.008
Liang, 2004
Liang, 2017, Remote sensing of earth’s energy budget: an overview of recent progress
Liang, 2013, A long-term global LAnd surface satellite (GLASS) data-set for environmental studies, Int. J. Digit. Earth, 6, 5, 10.1080/17538947.2013.805262
Liang, 2014
Liang, 2019, Remote sensing of earth’s energy budget: synthesis and review, Int. J. Digit. Earth, 12, 737, 10.1080/17538947.2019.1597189
Liang, 2010, Review on estimation of land surface radiation and energy budgets from ground measurement, remote sensing and model simulations, IEEE J. Select. Top. Appl. Earth Observ. Remote Sens., 3, 225, 10.1109/JSTARS.2010.2048556
Liu, 2013, A statistics-based temporal filter algorithm to map spatiotemporally continuous shortwave albedo from MODIS data, Hydrol. Earth Syst. Sci., 17, 2121, 10.5194/hess-17-2121-2013
Liu, 2019, Retrieval of global orbit drift corrected land surface temperature from long-term AVHRR data, Remote Sens., 11, 2843, 10.3390/rs11232843
Liu, 2006, Scaling of land surface temperature using satellite data: A case examination on ASTER and MODIS products over a heterogeneous terrain area, Remote Sens. Environ., 105, 115, 10.1016/j.rse.2006.06.012
Loeb, 2018, Clouds and the Earth’s radiant energy system (CERES) energy balanced and filled (EBAF) top-of-atmosphere (TOA) Edition-4.0 data product, J. Clim., 31, 895, 10.1175/JCLI-D-17-0208.1
Long, 2020, Generation of MODIS-like land surface temperatures under all-weather conditions based on a data fusion approach, Remote Sens. Environ., 246, 111863, 10.1016/j.rse.2020.111863
Lu, 2011, Estimating land-surface temperature under clouds using MSG/SEVIRI observations, Int. J. Appl. Earth Obs. Geoinf., 13, 265
Luyssaert, 2014, Land management and land-cover change have impacts of similar magnitude on surface temperature, Nat. Clim. Chang., 4, 389, 10.1038/nclimate2196
Ma, 2017, Simultaneous inversion of multiple land surface parameters from MODIS optical–thermal observations, ISPRS J. Photogramm. Remote Sens., 128, 240, 10.1016/j.isprsjprs.2017.04.007
Ma, 2018, Simultaneous estimation of multiple land-surface parameters from VIIRS optical-thermal data, IEEE Geosci. Remote Sens. Lett., 15, 156, 10.1109/LGRS.2017.2779040
Ma, 2020, An optimization approach for estimating multiple land surface and atmospheric variables from the geostationary advanced Himawari imager top-of-atmosphere observations, IEEE Trans. Geosci. Remote Sens., 59, 2888, 10.1109/TGRS.2020.3007118
Mao, 2007, A physics-based statistical algorithm for retrieving land surface temperature from AMSR-E passive microwave data, Sci. China Ser. D Earth Sci., 50, 1115, 10.1007/s11430-007-2053-x
Minder, 2010, Surface temperature lapse rates over complex terrain: Lessons from the Cascade Mountains, J. Geophys. Res.-Atmos., 115
Neteler, 2010, Estimating daily land surface temperatures in mountainous environments by reconstructed MODIS LST data, Remote Sens., 2, 333, 10.3390/rs1020333
Njoku, 1999, Retrieval of land surface parameters using passive microwave measurements at 6-18 GHz, IEEE Trans. Geosci. Remote Sens., 37, 79, 10.1109/36.739125
Nogueira, 2018, Exploiting ConvNet diversity for flooding identification, IEEE Geosci. Remote Sens. Lett., 15, 1446, 10.1109/LGRS.2018.2845549
Novick, 2018, The AmeriFlux network: a coalition of the willing, Agric. For. Meteorol., 249, 444, 10.1016/j.agrformet.2017.10.009
Ohmura, 1998, Baseline surface radiation network (BSRN/WCRP): new precision radiometry for climate research, Bull. Am. Meteorol. Soc., 79, 2115, 10.1175/1520-0477(1998)079<2115:BSRNBW>2.0.CO;2
Owe, 2001, On the relationship between thermodynamic surface temperature and high-frequency (37 GHz) vertically polarized brightness temperature under semi-arid conditions, Int. J. Remote Sens., 22, 3521, 10.1080/01431160110063788
Rao, 2019, Estimating daily average surface air temperature using satellite land surface temperature and top-of-atmosphere radiation products over the Tibetan plateau, Remote Sens. Environ., 234, 111462, 10.1016/j.rse.2019.111462
Shi, 2017, A method for consistent estimation of multiple land surface parameters from MODIS top-of-atmosphere time series data, IEEE Trans. Geosci. Remote Sens., 55, 5158, 10.1109/TGRS.2017.2702609
Sobrino, 2004, Land surface temperature retrieval from LANDSAT TM 5, Remote Sens. Environ., 90, 434, 10.1016/j.rse.2004.02.003
Sun, 2007, Note on the NDVI-LST relationship and the use of temperature-related drought indices over North America, Geophys. Res. Lett., 34
Sun, 2019, Land surface temperature derivation under all sky conditions through integrating AMSR-E/AMSR-2 and MODIS/GOES observations, Remote Sens., 11, 1704, 10.3390/rs11141704
Tomlinson, 2011, Remote sensing land surface temperature for meteorology and climatology: a review, Meteorol. Appl., 18, 296, 10.1002/met.287
Wan, 2006, 5
Wan, 1997, A physics-based algorithm for retrieving land-surface emissivity and temperature from EOS/MODIS data, IEEE Trans. Geosci. Remote Sens., 35, 980, 10.1109/36.602541
Wang, 2020, A new set of MODIS land products (MCD18): downward shortwave radiation and Photosynthetically active radiation, Remote Sens., 12, 168, 10.3390/rs12010168
Wang, 2013, Global atmospheric downward longwave radiation at the surface from ground-based observations, satellite retrievals, and reanalyses, Rev. Geophys., 51, 150, 10.1002/rog.20009
Wang, 2009, Evaluation of ASTER and MODIS land surface temperature and emissivity products using long-term surface longwave radiation observations at SURFRAD sites, Remote Sens. Environ., 113, 1556, 10.1016/j.rse.2009.03.009
Wen, 2003, Determination of land surface temperature and soil moisture from tropical rainfall measuring mission/microwave imager remote sensing data, J. Geophys. Res.-Atmos., 108, ACL 2, 10.1029/2002JD002176
Weng, 1998, Physical retrieval of land surface temperature using the special sensor microwave imager, J. Geophys. Res.-Atmos., 103, 8839, 10.1029/98JD00275
Westermann, 2011, Spatial and temporal variations of summer surface temperatures of high-arctic tundra on Svalbard—implications for MODIS LST based permafrost monitoring, Remote Sens. Environ., 115, 908, 10.1016/j.rse.2010.11.018
Wu, 2019, Reconstructing geostationary satellite land surface temperature imagery based on a multiscale feature connected convolutional neural network, Remote Sens., 11, 300, 10.3390/rs11030300
Xiao, 2011, Real-time retrieval of leaf area index from MODIS time series data, Remote Sens. Environ., 115, 97, 10.1016/j.rse.2010.08.009
Xiao, 2016, Long-time-series global land surface satellite leaf area index product derived from MODIS and AVHRR surface reflectance, IEEE Trans. Geosci. Remote Sens., 54, 5301, 10.1109/TGRS.2016.2560522
Xu, 2021, A new land surface temperature fusion strategy based on cumulative distribution function matching and multiresolution Kalman filtering, Remote Sens. Environ., 254, 112256, 10.1016/j.rse.2020.112256
Xu, 2019, Mapping regional turbulent heat fluxes via variational assimilation of land surface temperature data from polar orbiting satellites, Remote Sens. Environ., 221, 444, 10.1016/j.rse.2018.11.023
Xu, 2013, Reconstruction of the land surface temperature time series using harmonic analysis, Comput. Geosci., 61, 126, 10.1016/j.cageo.2013.08.009
Yang, 2019, An integrated method for reconstructing daily MODIS land surface temperature data, IEEE J. Select. Top. Appl. Earth Observ. Remote Sens., 12, 1026, 10.1109/JSTARS.2019.2896455
Yu, 2014, Estimating the land-surface temperature of pixels covered by clouds in MODIS products, J. Appl. Remote. Sens., 8, 10.1117/1.JRS.8.083525
Yu, 2008, Developing algorithm for operational GOES-R land surface temperature product, IEEE Trans. Geosci. Remote Sens., 47, 936
Yuan, 2020, Deep learning in environmental remote sensing: achievements and challenges, Remote Sens. Environ., 241, 111716, 10.1016/j.rse.2020.111716
Zeng, 2018, A two-step framework for reconstructing remotely sensed land surface temperatures contaminated by cloud, ISPRS J. Photogramm. Remote Sens., 141, 30, 10.1016/j.isprsjprs.2018.04.005
Zhang, 2016, Deep learning for remote sensing data: A technical tutorial on the state of the art, IEEE Geosci. Rem. Sens. Magaz., 4, 22, 10.1109/MGRS.2016.2540798
Zhang, 2018, Missing data reconstruction in remote sensing image with a unified spatial–temporal–spectral deep convolutional neural network, IEEE Trans. Geosci. Remote Sens., 56, 4274, 10.1109/TGRS.2018.2810208
Zhang, 2015, Estimation of land surface temperature under cloudy skies using combined diurnal solar radiation and surface temperature evolution, Remote Sens., 7, 905, 10.3390/rs70100905
Zhang, 2019, A method based on temporal component decomposition for estimating 1-km all-weather land surface temperature by merging satellite thermal infrared and passive microwave observations, IEEE Trans. Geosci. Remote Sens., 57, 4670, 10.1109/TGRS.2019.2892417
Zhang, 2019, A method based on temporal component decomposition for estimating 1-km all-weather land surface temperature by merging satellite thermal infrared and passive microwave observations, IEEE Trans. Geosci. Remote Sens., 57, 4670, 10.1109/TGRS.2019.2892417
Zhang, 2020, Estimation of 1-km all-weather remotely sensed land surface temperature based on reconstructed spatial-seamless satellite passive microwave brightness temperature and thermal infrared data, ISPRS J. Photogramm. Remote Sens., 167, 321, 10.1016/j.isprsjprs.2020.07.014
Zhang, 2021, A practical reanalysis data and thermal infrared remote sensing data merging (RTM) method for reconstruction of a 1-km all-weather land surface temperature, Remote Sens. Environ., 260, 112437, 10.1016/j.rse.2021.112437
Zhao, 2020, Reconstruction of daytime land surface temperatures under cloud-covered conditions using integrated MODIS/Terra land products and MSG geostationary satellite data, Remote Sens. Environ., 247, 111931, 10.1016/j.rse.2020.111931
Zhou, 2015, Developing a temporally land cover-based look-up table (TL-LUT) method for estimating land surface temperature based on AMSR-E data over the Chinese landmass, Int. J. Appl. Earth Obs. Geoinf., 34, 35
Zhou, 2018, The GLASS land surface temperature product, IEEE J. Select. Top. Appl. Earth Observ. Remote Sens., 12, 493, 10.1109/JSTARS.2018.2870130