CloudRank-D: benchmarking and ranking cloud computing systems for data processing applications
Tóm tắt
Từ khóa
Tài liệu tham khảo
Armbrust M, Fox A, Griffith R, Joseph A, Katz R, Konwinski A, Lee G, Patterson D, Rabkin A, Stoica I, Zaharia M. Above the clouds: a Berkeley view of cloud computing. Deptartment Electrical Engineering and Compututer Sciences, University of California, Berkeley, Report UCB/EECS, 2009, 28
Barroso L, Hölzle U. The datacenter as a computer: an introduction to the design of warehouse-scale machines. Synthesis Lectures on Computer Architecture, 2009, 4(1): 1–108
http://wiki.apache.org/hadoop/PoweredBy
Wang P, Meng D, Han J, Zhan J, Tu B, Shi X, Wan L. Transformer: a new paradigm for building data-parallel programming models. IEEE Micro, 2010, 30(4): 55–64
Isard M, Budiu M, Yu Y, Birrell A, Fetterly D. Dryad: distributed dataparallel programs from sequential building blocks. ACM SIGOPS Operating Systems Review, 2007, 41(3): 59–72
Thusoo A, Shao Z, Anthony S, Borthakur D, Jain N, Sen Sarma J, Murthy R, Liu H. Data warehousing and analytics infrastructure at Facebook. In: Proceedings of the 2010 International Conference on Management of Data. 2010, 1013–1020
Dongarra J, Luszczek P, Petitet A. The linpack benchmark: past, present and future. Concurrency and Computation: Practice and Experience, 2003, 15(9): 803–820
http://hadoop.apache.org
Bienia C. Benchmarking modern multiprocessors. PhD thesis. Princeton University, 2011
http://www.spec.org/cpu2006
http://www.spec.org/web2005
http://www.tpc.org/information/benchmarks.asp
http://hadoop.apache.org/mapreduce/docs/current/gridmix.html
Huang S, Huang J, Dai J, Xie T, Huang B. The hibench benchmark suite: characterization of the mapreduce-based data analysis. In: Proceedings of the 26th IEEE International Conference on Data Engineering Workshops, ICDEW’10. 2010, 41–51
Chen Y, Ganapathi A, Griffith R, Katz R. The case for evaluating mapreduce performance using workload suites. In: Proceedings of the IEEE 19th International Symposium on Modeling, Analysis & Simulation of Computer and Telecommunication Systems, MASCOTS’11. 2011, 390–399
Ferdman M, Adileh A, Kocberber O, Volos S, Alisafaee M, Jevdjic D, Kaynak C, Popescu A, Ailamaki A, Falsafi B. Clearing the clouds: a study of emerging scale-out workloads on modern hardware. In: Proceedings of the 17th International Conference on Architectural Support for Programming Languages and Operating Systems. 2012, 37–48
Zhan J, Zhang L, Sun N, Wang L, Jia Z, Luo C. High volume throughput computing: identifying and characterizing throughput oriented workloads in data centers. In: Proceedings of the 2012 Workshop on Large-Scale Parallel Processing. 2012
Xi H, Zhan J, Jia Z, Hong X, Wang L, Zhang L, Sun N, Lu G. Characterization of real workloads of web search engines. In: Proceedings of the 2011 IEEE International Symposium on Workload Characterization, IISWC’11. 2011, 15–25
http://hadoop.apache.org/common/docs/r0.20.2/fair_scheduler.html
Zaharia M, Borthakur D, Sarma J, Elmeleegy K, Shenker S, Stoica I. Job scheduling for multi-user mapreduce clusters. EECS Department, University of California, Berkeley, Tech. Rep. UCB/EECS-2009-55, 2009
http://hadoop.apache.org/common/docs/r0.20.2/capacity_scheduler.html
Rasooli A, Down D. An adaptive scheduling algorithm for dynamic heterogeneous Hadoop systems. In: Proceedings of the 2011 Conference of the Center for Advanced Studies on Collaborative Research. 2011, 30–44
Sandholm T, Lai K. Dynamic proportional share scheduling in Hadoop. In: Job Scheduling Strategies for Parallel Processing. 2010, 110–131
Wolf J, Rajan D, Hildrum K, Khandekar R, Kumar V, Parekh S, Wu K, Balmin A. Flex: a slot allocation scheduling optimizer for mapreduce workloads. Middleware 2010, 2010, 1–20
Lee G, Chun B, Katz R. Heterogeneity-aware resource allocation and scheduling in the cloud. In: Proceedings of the 3rd USENIXWorkshop on Hot Topics in Cloud Computing, HotCloud’11. 2011
Yong M, Garegrat N, Mohan S. Towards a resource aware scheduler in hadoop. In: Proceedings of the 2009 IEEE International Conference on Web Services. 2009, 102–109
Wang L, Zhan J, Shi W, Yi L. In cloud, can scientific communities benefit from the economies of scale? IEEE Transactions on Parallel and Distributed Systems, 2012, 23(2): 296–303
Narayanan R, Ozisikyilmaz B, Zambreno J, Memik G, Choudhary A. Minebench: a benchmark suite for data mining workloads. In: Proceedings of the 2006 IEEE International Symposium on Workload Characterization. 2006, 182–188
Patterson D, Hennessy J. Computer organization and design: the hardware/software interface. Morgan Kaufmann, 2009
Dean J, Ghemawat S. MapReduce: simplified data processing on large clusters. Communications of the ACM, 2008, 51(1): 107–113
Wu X, Kumar V, Ross Quinlan J, Ghosh J, Yang Q, Motoda H, McLachlan G, Ng A, Liu B, Yu P, Zhou Z-H, Steinbach M, Hand D, Steinberg D. Top 10 algorithms in data mining. Knowledge and Information Systems, 2008, 14(1): 1–37
Linden G, Smith B, York J. Amazon.com recommendations: item-toitem collaborative filtering. IEEE Internet Computing, 2003, 7(1): 76–80
http://en.wikipedia.org/wiki/Association_rule_learning
https://issues.apache.org/jira/browse/HIVE-396
http://hive.apache.org/