Closed-form expressions for the effective coefficients of a fiber-reinforced composite with transversely isotropic constituents – II. Piezoelectric and square symmetry
Tài liệu tham khảo
Avellaneda, 1998, Calculating the performance of 1–3 piezoelectric composites for hydrophone applications: An effective medium opproach, J. Acoust. Soc. Am., 103, 1449, 10.1121/1.421306
Bensoussan, 1978
Benveniste, 1992, Uniform fields and universal relations in piezoelectric composites, J. Mech. Phys. Solids, 40, 1295, 10.1016/0022-5096(92)90016-U
Bisegna, 1996, Variational bounds for the overall properties of piezoelectric composites, J. Mech. Phys. Solids, 44, 583, 10.1016/0022-5096(95)00084-4
Chan, 1989, Simple model for piezoelectric ceramic/polymer 1–3 composites used in ultrasonic transducer applications, IEEE Trans. Ultrason. Ferroelec. Freq. Contr., 38, 434, 10.1109/58.31780
Dunn, 1993, Micromechanics predictions of the effective electroelastic moduli of piezoelectric composites, Int. J. Solids Struct., 30, 161, 10.1016/0020-7683(93)90058-F
Galka, 1992, Homogenization and thermopiezoelectricity, Mech. Res. Commun., 19, 315, 10.1016/0093-6413(92)90050-K
Galka, 1996, Some computational aspects of homogenization of thermopiezoelectric composites, Comp. Assoc. Mech. Eng. Sci., 3, 113
Grekov, 1989, Effective properties of a transversely isotropic piezocomposite with cylindrical inclusions, Ferroelectrics, 99, 115, 10.1080/00150198908221444
Grigolyuk, 1970
Hill, 1964, Theory of mechanical properties of fiber-strengthened materials: I. Elastic behaviour, J. Mech. Phys. Solids, 12, 199, 10.1016/0022-5096(64)90019-5
Hori, 1998, Universal bounds for effective piezoelectric moduli, Mech. Mater., 30, 1, 10.1016/S0167-6636(98)00029-5
Hori, 1999, On two micromechanics theories for determining micro–macro relations in heterogeneous solids, Mech. Mater., 31, 667, 10.1016/S0167-6636(99)00020-4
Ikeda, 1990
Janas, 1995, Overview of fine-scale piezoelectric ceramic/polymer composite processing, J. Am. Ceram. Soc., 78, 2945, 10.1111/j.1151-2916.1995.tb09068.x
Milgrom, 1989, Linear response of two-phase composites with cross moduli: Exact universal relations, Phys. Rev. A, 40, 1568, 10.1103/PhysRevA.40.1568
Nan, 1993, Comment on “Relationships between the effective properties of transversely isotropic piezoelectric composites”, J. Mech. Phys. Solids, 41, 1567, 10.1016/0022-5096(93)90040-M
Parton, 1993
Rodrı́guez-Ramos, 2001, Closed-form expressions for the effective coefficients of fiber-reinforced composite with transversely isotropic constituents – I. Elastic and square symmetry, Mech. Mater., 33, 223, 10.1016/S0167-6636(00)00059-4
Sánchez-Palencia, E., 1980. Non Homogeneous Media and Vibration Theory. Lecture Notes in Physics 127, Springer, Berlin
Schulgasser, 1992, Relationship between the efective properties of transversely isotropic piezoelectric composites, J. Mech. Phys. Solids, 40, 473, 10.1016/S0022-5096(05)80022-5
Smith, 1993, Modeling 1–3 composite piezoelectrics: hydrostatic response, IEEE Trans. Ultrason. Ferroelec. Freq. Contr., 40, 41, 10.1109/58.184997
Smith, 1991, Modeling 1–3 composite piezoelectrics: thickness-mode oscillations, IEEE Trans. Ultrason. Ferroelec. Freq. Contr., 38, 40, 10.1109/58.67833
Smith, 1988, Composite piezoelectrics: Basic research to a practical device, Ferroelectrics, 87, 309, 10.1080/00150198808201393
Smith, 1985, Tailoring the properties of composite piezoelectric materials, Proc. IEEE Ultrason. Sympos., 642
Smith, 1989, Design of piezocomposites for ultrasonic transducers, Ferroelectrics, 91, 155, 10.1080/00150198908015735
Taunaumang, 1994, Electromechanical properties of 1–3 piezoelectric ceramic/piezoelectric polymer composites, J. Appl. Phys., 76, 484, 10.1063/1.357099
Telega, J.J., 1991. Piezoelectricity and homogenization. Application to biomechanics. In: Maugin, G.A. (Ed.), Continuum Models and Discrete Systems 2. Longman, London, pp. 220–229
Turbé, 1991, On the linear piezoelectricity of composite materials, Math. Meth. Appl. Sci., 14, 403, 10.1002/mma.1670140604