Close-to-Convexity of Some Special Functions and Their Derivatives

Árpád Baricz1, Róbert Szász2
1Department of Economics, Babeş-Bolyai University, Cluj-Napoca, Romania
2Department of Mathematics and Informatics, Sapientia Hungarian University of Transylvania, Târgu-Mureş, Romania

Tóm tắt

Từ khóa


Tài liệu tham khảo

Baricz, Á.: Geometric properties of generalized Bessel functions of complex order. Mathematica 48(71), 13–18 (2006)

Baricz, Á.: Geometric properties of generalized Bessel functions. Publ. Math. Debrecen 73, 155–178 (2008)

Baricz, Á.: Generalized Bessel Functions of the First Kind, Vol 1994 of Lecture Notes in Mathematics. Springer, Berlin (2010)

Baricz, Á., Koumandos, S.: Turán type inequalities for some Lommel functions of the first kind. Proc. Edinb. Math. Soc. (2014) (in press)

Baricz, Á., Kupán, P.A., Szász, R.: The radius of starlikeness of normalized Bessel functions of the first kind. Proc. Am. Math. Soc. 142(6), 2019–2025 (2014)

Baricz, Á., Ponnusamy, S.: Starlikeness and convexity of generalized Bessel functions. Integral Transforms Spec. Funct. 21, 641–653 (2010)

Baricz, Á., Ponnusamy, S., Singh, S.: Turán type inequalities for Struve functions. Proc. Am. Math. Soc. (submitted) (2014)

Baricz, Á., Szász, R.: The radius of convexity of normalized Bessel functions of the first kind. Anal. Appl. 12(5), 485–509 (2014)

Brown, R.K.: Univalence of Bessel functions. Proc. Am. Math. Soc. 11(2), 278–283 (1960)

Brown, R.K.: Univalent solutions of $$W^{\prime \prime }+pW=0,$$ W ″ + p W = 0 , Canad. J. Math. 14, 69–78 (1962)

Brown, R.K.: Univalence of normalized solutions of $$W^{\prime \prime }(z)+p(z)W(z)=0,$$ W ″ ( z ) + p ( z ) W ( z ) = 0 , Int. J. Math. Math. Sci. 5, 459–483 (1982)

Koumandos, S., Lamprecht, M.: The zeros of certain Lommel functions. Proc. Am. Math. Soc. 140, 3091–3100 (2012)

Kreyszig, E., Todd, J.: The radius of univalence of Bessel functions. Ill. J. Math. 4, 143–149 (1960)

Landau, L.J.: Ratios of Bessel functions and roots of $$\alpha {J}_\nu (x)+xJ^{\prime }_\nu (x)=0$$ α J ν ( x ) + x J ν ′ ( x ) = 0 . J. Math. Anal. Appl. 240, 174–204 (1999)

Olver, F.W.J., Lozier, D.W., Boisvert, R.F., Clark, C.W. (eds.): NIST Handbook of Mathematical Functions. Cambridge University Press, Cambridge (2010)

Pólya, G.: Über die Nullstellen gewisser ganzer Funktionen. Math. Z. 2, 352–383 (1918)

Shah, S.M., Trimble, S.Y.: Entire functions with univalent derivatives. J. Math. Anal. Appl. 33, 220–229 (1971)

Steinig, J.: The real zeros of Struve’s function. SIAM J. Math. Anal. 1(3), 365–375 (1970)

Szász, R.: On starlikeness of Bessel functions of the first kind. In: Proceedings of the 8th Joint Conference on Mathematics and Computer Science, Komárno, Slovakia (2010)

Szász, R., Kupán, P.A.: About the univalence of the Bessel functions. Stud. Univ. Babeş-Bolyai Math. 54(1), 127–132 (2009)

Watson, G.N.: A Treatise of the Theory of Bessel Functions. Cambridge University Press, Cambridge (1995)