Cloning of adiponectin receptors that mediate antidiabetic metabolic effects

Nature - Tập 423 Số 6941 - Trang 762-769 - 2003
Toshimasa Yamauchi1, Junji Kamon1, Yusuke Ito1, Atsushi Tsuchida1, Takehiko Yokomizo2, Shunbun Kita1, Takuya Sugiyama3, Makoto Miyagishi4, Kazuo Hara1, Masaki Tsunoda5, Koji Murakami5, Toshiaki Ohteki6, Shoji Uchida1, Sato Takekawa1, Hironori Waki6, Nelson H. Tsuno7, Yoichi Shibata7, Yasuo Terauchi6, Philippe Froguel8, Kazuyuki Tobe6, Shigeo Koyasu6, Kazunari Taira4, Toshio Kitamura3, Takao Shimizu2, Ryozo Nagai1, Takashi Kadowaki6
1Department of Internal Medicine, Graduate School of Medicine, University of Tokyo, 113-8655, Tokyo, Japan
2Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Tokyo, Tokyo, 113-0033
3Division of Hematopoietic Factors, Institute of Medical Science, University of Tokyo, 108-8639, Tokyo, Japan
4Department of Chemistry and Biotechnology, School of Engineering, University of Tokyo, 113-8656, Tokyo, Japan
5Central Research Laboratories, Kyorin Pharmaceutical, Tochigi 329-0114, Japan
6CREST of Japan Science and Technology Corporation, 332-0012, Japan
7Department of Transfusion Medicine, Graduate School of Medicine, University of Tokyo, 113-8655, Tokyo, Japan
8Institute of Biology-CNRS, Pasteur Institute of Lille, UPRES, A8090, 59000, Lille, France

Tóm tắt

Từ khóa


Tài liệu tham khảo

Scherer, P. E., Williams, S., Fogliano, M., Baldini, G. & Lodish, H. F. A novel serum protein similar to C1q, produced exclusively in adipocytes. J. Biol. Chem. 270, 26746–26749 (1995)

Hu, E., Liang, P. & Spiegelman, B. M. AdipoQ is a novel adipose-specific gene dysregulated in obesity. J. Biol. Chem. 271, 10697–10703 (1996)

Maeda, K. et al. cDNA cloning and expression of a novel adipose specific collagen-like factor, apM1 (AdiPose Most abundant Gene transcript 1). Biochem. Biophys. Res. Commun. 221, 286–296 (1996)

Nakano, Y., Tobe, T., Choi-Miura, N. H., Mazda, T. & Tomita, M. Isolation and characterization of GBP28, a novel gelatin-binding protein purified from human plasma. J. Biochem. (Tokyo) 120, 802–812 (1996)

Fruebis, J. et al. Proteolytic cleavage product of 30-kDa adipocyte complement-related protein increases fatty acid oxidation in muscle and causes weight loss in mice. Proc. Natl Acad. Sci. USA 98, 2005–2010 (2001)

Yamauchi, T. et al. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nature Med. 7, 941–946 (2001)

Berg, A. H., Combs, T. P., Du, X., Brownlee, M. & Scherer, P. E. The adipocyte-secreted protein Acrp30 enhances hepatic insulin action. Nature Med. 7, 947–953 (2001)

Kubota, N. et al. Disruption of adiponectin causes insulin resistance and neointimal formation. J. Biol. Chem. 277, 25863–25866 (2002)

Maeda, N. et al. Diet-induced insulin resistance in mice lacking adiponectin/ACRP30. Nature Med. 8, 731–737 (2002)

Yamauchi, T. et al. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nature Med. 8, 1288–1295 (2002)

Tomas, E. et al. Enhanced muscle fat oxidation and glucose transport by ACRP30 globular domain: acetyl-CoA carboxylase inhibition and AMP-activated protein kinase activation. Proc. Natl Acad. Sci. USA 99, 16309–16313 (2002)

Yamauchi, T. et al. Globular adiponectin protected ob/ob mice from diabetes and apoE deficient mice from atherosclerosis. J. Biol. Chem. 278, 2461–2468 (2003)

Ouchi, N. et al. Adipocyte-derived plasma protein, adiponectin, suppresses lipid accumulation and class A scavenger receptor expression in human monocyte-derived macrophages. Circulation 103, 1057–1063 (2001)

Kitamura, T. et al. Efficient screening of retroviral cDNA expression libraries. Proc. Natl Acad. Sci. USA 92, 9146–9150 (1995)

Waterston, R. H. et al. Initial sequencing and comparative analysis of the mouse genome. Nature 420, 520–562 (2002)

Okazaki, Y. et al. Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs. Nature 420, 563–573 (2002)

Wess, J. G-protein-coupled receptors: molecular mechanisms involved in receptor activation and selectivity of G-protein recognition. FASEB. J. 11, 346–354 (1997)

Yokomizo, T., Izumi, T., Chang, K., Takuwa, Y. & Shimizu, T. A G-protein-coupled receptor for leukotriene B4 that mediates chemotaxis. Nature 387, 620–624 (1997)

Scheer, A., Fanelli, F., Costa, T., De Benedetti, P. G. & Cotecchia, S. Constitutively active mutants of the alpha 1B-adrenergic receptor: role of highly conserved polar amino acids in receptor activation. EMBO. J. 15, 3566–3578 (1996)

Miyagishi, M. & Taira, K. U6 promoter-driven siRNAs with four uridine 3′ overhangs efficiently suppress targeted gene expression in mammalian cells. Nature Biotechnol. 20, 497–500 (2002)

Karpichev, I. V., Cornivelli, L. & Small, G. M. Multiple regulatory roles of a novel Saccharomyces cerevisiae protein, encoded by YOL002c, in lipid and phosphate metabolism. J. Biol. Chem. 277, 19609–19617 (2002)

Barger, P. M., Browning, A. C., Garner, A. N. & Kelly, D. P. p38 mitogen-activated protein kinase activates peroxisome proliferator-activated receptor alpha: a potential role in the cardiac metabolic stress response. J. Biol. Chem. 276, 44495–44501 (2001)

Puigserver, P. et al. Cytokine stimulation of energy expenditure through p38 MAP kinase activation of PPARγ coactivator-1. Mol. Cell 8, 971–982 (2001)

Michael, L. F. et al. Restoration of insulin-sensitive glucose transporter (GLUT4) gene expression in muscle cells by the transcriptional coactivator PGC-1. Proc. Natl Acad. Sci. USA 98, 3820–3825 (2001)

Morita, S., Kojima, T. & Kitamura, T. Plat-E: an efficient and stable system for transient packaging of retroviruses. Gene Ther. 7, 1063–1066 (2000)

Niwa, H., Yamamura, K. & Miyazaki, J. Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 108, 193–200 (1991)

Kyte, J. & Doolittle, R. F. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157, 105–132 (1982)