Cloning, expression, and characterization of a peptidoglycan hydrolase from the Burkholderia pseudomallei phage ST79

AMB Express - Tập 6 - Trang 1-10 - 2016
Nittaya Khakhum1, Umaporn Yordpratum2, Atcha Boonmee3, Unchalee Tattawasart2, Jorge L. M. Rodrigues4,5, Rasana W. Sermswan1
1Department of Biochemistry and Melioidosis Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
2Department of Microbiology and Melioidosis Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
3Department of Microbiology, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
4Department of Land, Air and Water Resources, University of California Davis, Davis, USA
5Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, USA

Tóm tắt

The lytic phage ST79 of Burkholderia pseudomallei can lyse a broad range of its host including antibiotic resistant isolates from within using a set of proteins, holin, lysB, lysC and endolysin, a peptidoglycan (PG) hydrolase enzyme. The phage ST79 endolysin gene identified as peptidase M15A was cloned, expressed and purified to evaluate its potential to lyse pathogenic bacteria. The molecular size of the purified enzyme is approximately 18 kDa and the in silico study cited here indicated the presence of a zinc-binding domain predicted to be a member of the subfamily A of a metallopeptidase. Its activity, however, was reduced by the presence of Zn2+. When Escherichia coli PG was used as a substrate and subjected to digestion for 5 min with 3 μg/ml of enzyme, the peptidase M15A showed 2 times higher in lysis efficiency when compared to the commercial lysozyme. The enzyme works in a broad alkaligenic pH range of 7.5–9.0 and temperatures from 25 to 42 °C. The enzyme was able to lyse 18 Gram-negative bacteria in which the outer membrane was permeabilized by chloroform treatment. Interestingly, it also lysed Enterococcus sp., but not other Gram-positive bacteria. In general, endolysin cannot lyse Gram-negative bacteria from outside, however, the cationic amphipathic C-terminal in some endolysins showed permeability to Gram-negative outer membranes. Genetically engineered ST79 peptidase M15A that showed a broad spectrum against Gram-negative bacterial PG or, in combination with an antibiotic the same way as combined drug methodology, could facilitate an effective treatment of severe or antibiotic resistant cases.

Tài liệu tham khảo

Abedon ST, Kuhl SJ, Blasdel BG, Kutter EM. Phage treatment of human infections. Bacteriophage. 2011;1:66–85. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25:3389–402. Arthur M, Reynolds P, Courvalin P. Glycopeptide resistance in enterococci. Trends Microbiol. 1996;4:401–7. Berry J, Summer EJ, Struck DK, Young R. The final step in the phage infection cycle: the Rz and Rz1 lysis proteins link the inner and outer membranes. Mol Microbiol. 2008;70:341–51. Besserer A, Puech-Pagès V, Kiefer P, Gomez-Roldan V, Jauneau A, Roy S, Portais J-C, Roux C, Bécard G, Séjalon-Delmas N. Strigolactones stimulate arbuscular mycorrhizal fungi by activating mitochondria. PLoS Biol. 2006;4:e226. doi:10.1371/journal.pbio.0040226. Biasini M, Bienert S, Waterhouse A, Arnold K, Studer G, Schmidt T, Kiefer F, Cassarino TG, Bertoni M, Bordoli L, Schwede T. SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res. 2014;. doi:10.1093/nar/gku340. Borysowski J, Weber-Dabrowska B, Górski A. Bacteriophage endolysins as a novel class of antibacterial agents. Exp Biol Med (Maywood). 2006;231:366–77. Briers Y, Lavigne R, Volckaert G, Hertveldt K. A standardized approach for accurate quantification of murein hydrolase activity in high-throughput assays. J Biochem Biophys Meth. 2007a;70:531–3. Briers Y, Volckaert G, Cornelissen A, Lagaert S, Michiels CW, Hertveldt K, Lavigne R. Muralytic activity and modular structure of the endolysins of Pseudomonas aeruginosa bacteriophages phiKZ and EL. Mol Microbiol. 2007b;65:1334–44. Briers Y, Walmagh M, Lavigne R. Use of bacteriophage endolysin EL188 and outer membrane permeabilizers against Pseudomonas aeruginosa. J Appl Microbiol. 2011;110:778–85. Chan BK, Abedon ST, Loc-Carrillo C. Phage cocktails and the future of phage therapy. Future Microbiol. 2013;8:769–83. Chen YS, Chen SC, Kao CM, Chen YL. Effects of soil pH, temperature and water content on the growth of Burkholderia pseudomallei. Folia Microbiol. 2003;48:253–6. Courvalin P. Vancomycin resistance in gram-positive cocci. Clinic Infect Dis. 2006;42(Suppl 1):S25–34. Davis KM, Weiser JN. Modifications to the peptidoglycan backbone help bacteria to establish infection. Infect Immun. 2011;79:562–70. Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J, Mitchell AL, Potter SC, Punta M, Qureshi M, Sangrador-Vegas A, Salazar GA, Tate J, Bateman A. The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res. 2016;44:D279–85. de Ruyter PGGA, Kuipers OP, Meijer WC, de Vos WM. Food-grade controlled lysis of Lactococcus lactis for accelerated cheese ripening. Nat Biotech. 1997;15:976–9. Gatedee J, Kritsiriwuthinan K, Galyov EE, Shan J, Dubinina E, Intarak N, Clokie MRJ, Korbsrisate S. Isolation and characterization of a novel podovirus which infects Burkholderia pseudomallei. Virol J. 2011;8:366. doi:10.1186/1743-422X-8-366. Golkar Z, Bagasra O, Pace DG. Bacteriophage therapy: a potential solution for the antibiotic resistance crisis. J Infect Dev Ctries. 2014;8:129–36. Guang-Han O, Leang-Chung C, Vellasamy KM, Mariappan V, Li-Yen C, Vadivelu J. Experimental Phage Therapy for Burkholderia pseudomallei Infection. PLoS One. 2016;11(7):e0158213. doi:10.1371/journal.pone.0158213. Ho K. Bacteriophage therapy for bacterial infections: rekindling a memory from the pre-antibiotics era. Perspect Biol Med. 2001;44(1):1–16. Jado I, López R, García E, Fenoll A, Casal J, García P, Network on behalf of the SPIS. Phagelytic enzymes as therapy for antibiotic-resistant Streptococcus pneumoniae infection in a murine sepsis model. J Antimicrob Chemother. 2003;52:967–73. Khakhum N, Yordpratum U, Boonmee A, Tattawasart U, Rodrigues JL, Sermswan RW. Identification of the Burkholderia pseudomallei bacteriophage ST79 lysis gene cassette. J Appl Microbiol. 2016. doi:10.1111/jam.13151. Kulsuwan R, Wongratanacheewin S, Wongratanacheewin RS, Yordpratum U, Tattawasart U. Lytic capability of bacteriophages (Family Myoviridae) on Burkholderia pseudomallei. Southeast Asian J Trop Med Public Health. 2015;45:1344–53. Kvitko BH, Cox CR, DeShazer D, Johnson SL, Voorhees KJ, Schweizer HP. φX216, a P2-like bacteriophage with broad Burkholderia pseudomallei and B. mallei strain infectivity. BMC Microbiol. 2012;12:289. Lai M-J, Lin N-T, Hu A, Soo P-C, Chen L-K, Chen L-H, Chang K-C. Antibacterial activity of Acinetobacter baumannii phage ϕAB2 endolysin (LysAB2) against both gram-positive and gram-negative bacteria. App Microbiol biotechnol. 2011;90:529–39. Leelarasamee A, Bovornkitti S. Melioidosis: review and update. Rev Infect Dis. 1989;11:413–25. Lavigne R, Briers Y, Hertveldt K, Robben J, Volckaert G. Identification and characterization of a highly thermostable bacteriophage lysozyme. Cell Mol Life Sci. 2004;61:2753–9. Lim J-A, Shin H, Kang D-H, Ryu S. Characterization of endolysin from a Salmonella Typhimurium-infecting bacteriophage SPN1S. Res Microbiol. 2012;163:233–41. Limmathurotsakul D, Funnell SGP, Torres AG, Morici LA, Brett PJ, Dunachie S, Atkins T, Altmann DM, Bancroft G, Peacock SJ. Consensus on the development of vaccines against naturally acquired melioidosis. Emerg Infect Dis. 2015;. doi:10.3201/eid2106.141480. Loessner MJ, Wendlinger G, Scherer S. Heterogeneous endolysins in Listeria monocytogenes bacteriophages: a new class of enzymes and evidence for conserved holin genes within the siphoviral lysis cassettes. Mol Microbiol. 1995;16:1231–41. Muyombwe A, Tanji Y, Unno H. Cloning and expression of a gene encoding the lytic functions of Bacillus amyloliquefaciens phage: evidence of an auxiliary lysis system. J Biosci Bioeng. 1999;88:221–5. Mikoulinskaia GV, Odinokova IV, Zimin AA, Lysanskaya VY, Feofanov SA, Stepnaya OA. Identification and characterization of the metal ion-dependent l-alanoyl-d-glutamate peptidase encoded by bacteriophage T5. FEBS J. 2009;276:7329–42. Mongkolrob R, Taweechaisupapong S, Tungpradabkul S. Correlation between biofilm production, antibiotic susceptibility and exopolysaccharide composition in Burkholderia pseudomallei bpsI, ppk, and rpoS mutant strains. Microbiol Immunol. 2015;59:653–63. Nelson DC, Schmelcher M, Rodriguez-Rubio L, Klumpp J, Pritchard DG, Dong S, Donovan DM. Endolysins as antimicrobials. Adv Virus Res. 2012;83:299–365. O’Hara AM, Shanahan F. The gut flora as a forgotten organ. EMBO Rep. 2006;7:688–93. Palasatien S, Lertsirivorakul R, Royros P, Wongratanacheewin S, Sermswan RW. Soil physicochemical properties related to the presence of Burkholderia pseudomallei. Trans R Soc Trop Med Hyg. 2008;102(Suppl):S5–9. Pibalpakdee P, Wongratanacheewin S, Taweechaisupapong S, Niumsup PR. Diffusion and activity of antibiotics against Burkholderia pseudomallei biofilms. Int J Antimicrob Agents. 2012;39:356–9. Piuri M, Hatfull GF. A peptidoglycan hydrolase motif within the mycobacteriophage TM4 tape measure protein promotes efficient infection of stationary phase cells. Mol Microbiol. 2006;62:1569–85. Plotka M, Kaczorowska AK, Morzywolek A, Makowska J, Kozlowski LP. Biochemical characterization and validation of a catalytic site of a highly thermostable Ts2631 endolysin from the Thermus scotoductus phage vB_Tsc2631. PLoS One. 2015;10(9):e0137374. doi:10.1371/journal.pone.0137374. Rawlings ND, Morton FR. The MEROPS batch BLAST: a tool to detect peptidases and their non-peptidase homologues in a genome. Biochimie. 2008;90:243–59. Round JL, Mazmanian SK. The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol. 2009;9:313–23. Sambrook J, Russell DW. Molecular Cloning: a laboratory manual. 3rd ed. Cold Spring Harbor: Cold Spring Harbor Laboratory Press; 2001. Sariya L, Prempracha N, Keelapan P, Chittasophon N. Bacteriophage isolated from Burkholderia pseudomallei causes phenotypic changes in Burkholderia thailandensis. Sci Asia. 2006;32:83–91. Sawasdidoln C, Taweechaisupapong S, Sermswan RW, Tattawasart U, Tungpradabkul S, Wongratanacheewin S. Growing Burkholderia pseudomallei in biofilm stimulating conditions significantly induces antimicrobial resistance. PLoS One. 2010;5:e9196. Schleifer KH, Kandler O. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev. 1972;36:407–77. Son B, Yun J, Lim J-A, Shin H, Heu S, Ryu S. Characterization of LysB4, an endolysin from the Bacillus cereus-infecting bacteriophage B4. BMC Microbiol. 2012;12:33. Yordpratum U, Tattawasart U, Wongratanacheewin S, Sermswan RW. Novel lytic bacteriophages from soil that lyse Burkholderia pseudomallei. FEMS Microbiol Lett. 2011;314:81–8. Young I, Wang I, Roof WD. Phages will out: strategies of host cell lysis. Trends Microbiol. 2000;8:120–8. Zdobnov EM, Apweiler R. InterProScan–an integration platform for the signature-recognition methods in InterPro. Bioinformatics. 2001;17:847–8.