Clonal relationship between human and avian ciprofloxacin-resistant Escherichia coli isolates in North-Eastern Algeria

A. Agabou1,2, N. Lezzar2, Z. Ouchenane3, S. Khemissi3, D. Satta4, A. Sotto1,5, J.-P. Lavigne1,6, A. Pantel1,6
1Institut National de la Santé et de la Recherche Médicale, U1047, Université Montpellier, Nîmes, France
2Laboratoire PADESCA, Institut des Sciences Vétérinaires, Université des frères Mentouri, Constantine, Algeria
3Laboratoire de Microbiologie, Hôpital Militaire Régional Universitaire de Constantine, Constantine, Algeria
4Laboratoire de Biologie Moléculaire et Cellulaire, Département de Biologie Animale, Faculté des Sciences de la Nature et de la vie, Université des Frères Mentouri, Constantine, Algeria
5Service des Maladies Infectieuses et Tropicales, CHU Carémeau, Nîmes University Hospital, Nîmes, France
6Service de Microbiologie, CHU Carémeau, Nîmes University Hospital, Nîmes, France

Tóm tắt

The objectives of this study were to determine rates, patterns, and mechanisms of antibiotic resistance, and to assess connections between chicken commensal, human commensal, and pathogenic ciprofloxacin-resistant Escherichia coli isolates. All E. coli isolates collected from chickens, their farmers, and patients in the Constantine region (North-east Algeria) were analyzed for bla and plasmid-mediated quinolone resistance (PMQR) gene contents, phylogroups, Rep-PCR profiles, and multilocus sequence types. A high prevalence of resistance to fluoroquinolones (51.4 % to ciprofloxacin) was recorded in avian isolates. Of these, 22.2 % carried the aac(6’)-Ib-cr gene, whereas lower resistance levels to these antibiotics were recorded in chicken farmers’ isolates. None of the commensal isolates harbored the qnr, qepA, or oqxAB genes. One human pathogenic isolate was ertapenem-resistant and harbored the bla OXA-48 gene, 84 showed an extended-spectrum β-lactamase phenotype, with bla CTX-M-15 gene prevalent in 87.2 % of them. Seventy isolates were resistant to fluoroquinolones, with aac(6’)-Ib-cr present in 72.8 %, qnrB in 5.7 %, and qnrS in 10 %. Three Rep-PCR profiles were common to chicken commensal and human pathogenic isolates (phylogroups D and B1; ST21, ST48, and ST471 respectively); one was found in both chicken and chicken-farmer commensal strains (D; ST108), while another profile was identified in a chicken-farmer commensal strain and a human pathogenic one (B1; ST19). These findings suggest clonal and epidemiologic links between chicken and human ciprofloxacin-resistant E. coli isolates and the important role that poultry may play in the epidemiology of human E. coli infections in the Constantine region.

Tài liệu tham khảo

Geomaras I, Hastings JW, Holy A (2004) Genotypic analysis of Escherichia coli strains from poultry carcasses and their susceptibilities to antimicrobial agents. Appl Environ Microbiol 67:1940–1944 Smith JL, Drum DJV, Dai Y, Kim JM, Sanchez S, Maurer JJ, Hofacre CL, Lee MD (2007) Impact of antimicrobial usage on antimicrobial resistance in commensal Escherichia coli strains colonizing broiler chickens. Appl Environ Microbiol 73:1404–1414 Schjørring S, Krogfeldt KA (2011) Assessment of bacterial antibiotic resistance transfer in the gut. Int J Microbiol 2011:312956 Manges AR, Johnson JR (2012) Food-borne origins of Escherichia coli causing extraintestinal infections. Clin Infect Dis 55:712–719 Wang HH (2009) Commensal bacteria, microbial ecosystems, and horizontal gene transmission: adjusting our focus for strategic breakthroughs against antibiotic resistance. In: Jaykus LA, Wang HH, Schlesinger LS (eds) Food-borne microbes: shaping the host ecosystem. ASM Press, Washington DC, pp 267–281 White DG, Dho-Moulin M, Wilson RA, Whittam TS (1993) Clonal relationships and variation in virulence among Escherichia coli strains of avian origin. Microb Pathog 14:399–409 Johnson TJ, Kariyawasam S, Wannemuehler Y, Mangiamele P, Johnson SJ, Doetkott C, Skyberg JA, Lynne AM, Johnson JR, Nolan LK (2007) The genome sequence of avian pathogenic Escherichia coli strain O1:K1:H7 shares strong similarities with human extraintestinal pathogenic E. coli genomes. J Bacteriol 189:3228–3236 Ewers C, Antao EM, Diehl I, Philipp HC, Wieler LH (2009) Intestine and environment of the chicken as reservoirs for extraintestinal pathogenic Escherichia coli strains with zoonotic potential. Appl Environ Microbiol 75:184–192 Mora A, López C, Dabhi G, Blanco M, Blanco JE, Alonso MP, Herrera A, Mamani R, Bonacorsi S, Moulin-Schouleur M, Blanco J (2009) Extraintestinal pathogenic Escherichia coli O1:K1:H7/NM from human and avian origin: Detection of clonal groups B2 ST95 and D ST59 with different host distribution. BMC Microbiol 9:132 Pitout JD, Hanson ND, Church DL, Laupland KB (2004) Population-based laboratory surveillance for Escherichia coli-producing extended-spectrum beta-lactamases: importance of community isolates with blaCTX-M genes. Clin Infect Dis 38:1736–1741 Kim J, Lim YM, Jeong YS, Seol SY (2005) Occurrence of CTX-M-3, CTX-M-15, CTX-M-14 and CTX-M-9 extended-spectrum beta-lactamases in Enterobacteriaceae clinical isolates in Korea. Antimicrob Agents Chemother 49:1572–1575 Poirel L, Walsh TR, Cuvillier V, Nordmann P (2011) Multiplex PCR for detection of acquired carbapenemase genes. Diagn Microbiol Infect Dis 70:119–123 Park CH, Robicsek A, Jacoby GA, Sahm D, Hooper DC (2006) Prevalence in the United States of aac(6’)-Ib-cr encoding a ciprofloxacin-modifying enzyme. Antimicrob Agents Chemother 50:3953–3955 Cattoir V, Poirel L, Rotimi V, Soussy CJ, Nordmann P (2007) Multiplex PCR for detection of plasmid-mediated quinolone resistance qnr genes in ESBL-producing enterobacterial isolates. J Antimicrob Chemother 60:394–397 Yamane K, Wachino JI, Suzuki S, Arakawa Y (2008) Plasmid-mediated qepA gene among Escherichia coli clinical isolates from Japan. Antimicrob Agents Chemother 52:1564–1566 Liu BT, Wang XM, Liao XP, Sun J, Zhu HQ, Chen XY (2011) Plasmid-mediated quinolone resistance determinants oqxAB and aac(6’)-Ib-cr and extended-spectrum beta-lactamase gene blaCTX-M-24 co-located on the same plasmid in one Escherichia coli strain from China. J Antimicrob Chemother 66:1638–1639 Clermont O, Christenson JK, Denamur E, Gordon DM (2013) The Clermont Escherichia coli phylo-typing method revisited: improvement of specificity and detection of new phylo-groups. Environ Microbiol Rep 5:58–65 Clermont O, Dhanji H, Upton M, Gibreel T, Fox A, Boyd D, Mulvey MR, Nordmann P, Ruppé E, Sarthou JL, Frank T, Vimont S, Arlet G, Branger C, Woodford N, Denamur E (2009) Rapid detection of the O25b-ST131 clone of Escherichia coli encompassing the CTX-M-15-producing strains. J Antimicrob Chemother 64:274–277 Johnson JR, Kuskowski MA, Menard M, Gajewski A, Xercavins M, Garau J (2006) Similarity between human and chicken Escherichia coli isolates in relation to ciprofloxacin resistance status. J Infect Dis 194:71–78 Johnson JR, Sannes MR, Croy C, Johnston B, Clabots C, Kuskowski MA, Bender J, Smith KE, Winokur PL, Belongia EA (2007) Antimicrobial drug-resistant Escherichia coli from humans and poultry products, Minnesota and Wisconsin, 2002–2004. Emerg Infect Dis 13:838–846 Duffy G (2003) Verocytoxigenic Escherichia coli in animal faeces, manures and slurries. J Appl Microbiol 94:94s–103s Jakobsen L, Kurbasic A, Skjøt-Rasmussen L, Ejrnaes K, Porsbo LJ, Pedersen K, Jensen LB, Emborg HD, Agersø Y, Olsen KE, Aarestrup FM, Frimodt-Møller N, Hammerum AM (2010) Escherichia coli isolates from broiler chicken meat, broiler chickens, pork, and pigs share phylogroups and antimicrobial resistance with community-dwelling humans and patients with urinary tract infection. Foodborne Pathog Dis 7:537–547 Price LB, Graham JP, Lackey LG, Roess A, Vailes R, Silbergeld E (2007) Elevated risk of carrying gentamicin-resistant Escherichia coli among U.S. poultry workers. Environ Health Perspect 115:1738–1742 Karfunkel D, Carmeli Y, Chmelnitsky I, Kotlovsky T, Navon-Venezia S (2013) The emergence and dissemination of CTX-M-producing Escherichia coli sequence type 131 causing community-onset bacteremia in Israel. Eur J Clin Microbiol Infect Dis 32:513–521 Kolar M, Bardon J, Chroma M, Hricova K, Stosova T, Sauer P, Koukalova D (2010) ESBL and AmpC beta-lactamase-producing Enterobacteriaceae in poultry in the Czech Republic. Vet Med Czech 55:119–124 Schmiedel J, Falgenhauer L, Domann E, Bauerfeind R, Prenger-Berninghoff E, Imirzalioglu C, Chakraborty T (2014) Multiresistant extended-spectrum β-lactamase-producing Enterobacteriaceae from humans, companion animals and horses in central Hesse, Germany. BMC Microbiol 14:187 Ciccozzi M, Giufr M, Accogli M, Lo Presti A, Graziani C, Cella E, Cerquetti M (2013) Phylogenetic analysis of multidrug-resistant Escherichia coli clones isolated from humans and poultry. New Microbiol 36:385–394 Gordon DM, Cowling A (2003) The distribution and genetic structure of Escherichia coli in Australian vertebrates: host and geographic effects. Microbiology 149:3575–3586 Wirth T, Falush D, Lan R, Colles F, Mensa P, Wieler LH, Karch H, Reeves PR, Maiden MCJ, Ochman H, Achtman M (2006) Sex and virulence in Escherichia coli: an evolutionary perspective. Mol Microbiol 60:1136–1151 Escobar-Páramo P, Grenet K, Le Menac'h A, Rode L, Salgado E, Amorin C, Gouriou S, Picard B, Rahimy MC, Andremont A, Denamur E, Ruimy R (2004) Large-scale population structure of human commensal Escherichia coli isolates. Appl Environ Microbiol 70:5698–5700 Yang Z (2007) PAML 4: Phylogenetic analysis by maximum likelihood. Mol Biol Evol 24:1586–1591 Bettelheim KA, Ismail N, Shinbaum R, Shooter RA, Moorhouse E, Farrell W (1976) The distribution of serotypes of Escherichia coli in cow-pats and other animal material compared with serotypes of E. coli isolated from human sources. J Hyg (Lond) 76:403–406 Agabou A, Pantel A, Ouchenane Z, Lezzar N, Khemissi S, Satta D, Sotto A, Lavigne JP (2014) First description of OXA-48-producing Escherichia coli and the pandemic clone ST131 from patients hospitalised at a military hospital in Algeria. Eur J Clin Microbiol Infect Dis 33:1641–1646 Brahmi S, Dunyach-Rémy C, Touati A, Lavigne JP (2015) CTX-M-15-producing Escherichia coli and the pandemic clone O25b-ST131 isolated from wild fish in Mediterranean Sea. Clin Microbiol Infect 21:e18–e20 Mora A, Herrera A, Mamani R, Lopez C, Pilar Alonso M, Blanco JE, Blanco M, Dahbi G, García-Garrote F, Pita JM, Coira A, Bernardez MI, Blanco J (2010) Recent emergence of clonal group O25b:K1:H4-B2-ST131 ibeA strains among Escherichia coli poultry isolates, including CTX-M-9-producing strains, and comparison with clinical human isolates. Appl Environ Microbiol 76:6991–6997 Giufrè M, Graziani C, Accogli M, Luzzi I, Busani L, Cerquetti M (2012) Escherichia coli of human and avian origin: detection of clonal groups associated with fluoroquinolone and multidrug resistance in Italy. J Antimicrob Chemother 67:860–867 Cortés P, Blanc V, Mora A, Dahbi G, Blanco JE, Blanco M, López C, Andreu A, Navarro F, Alonso MP, Bou G, Blanco J, Llagostera M (2010) Isolation and characterization of potentially pathogenic antimicrobial-resistant Escherichia coli strains from chicken and pig farms in Spain. Appl Environ Microbiol 76:2799–2805 Johnson JR, Murray AC, Gajewski A, Sullivan M, Snippes P, Kuskowski MA, Smith KE (2003) Isolation and molecular characterization of nalidixic acid-resistant extraintestinal pathogenic Escherichia coli from retail chicken products. Antimicrob Agents Chemother 47:2161–2168 Peirano G, Pitout JD (2010) Molecular epidemiology of Escherichia coli producing CTX-M beta-lactamases: the worldwide emergence of clone ST131 O25:H4. Int J Antimicrob Agents 35:316–321 Lee YJ, Cho JK, Kim KS, Tak RB, Kim AR, Kim JW, Im SK, Kim BH (2005) Fluoroquinolone resistance and gyrA and parC mutations of Escherichia coli isolated from chicken. J Microbiol 43:391–397 Miles TD, McLaughlin W, Brown PD (2006) Antimicrobial resistance of Escherichia coli isolates from broiler chickens and humans. BMC Vet Res 2:7