Clique partitioning with value-monotone submodular cost
Tài liệu tham khảo
Garey, 1979
Zuckerman, 2007, Linear degree extractors and the inapproximability of max clique and chromatic number, Theory Comput., 3, 103, 10.4086/toc.2007.v003a006
Bodlaender, 1995, Restrictions of graph partition problems. Part I, Theoret. Comput. Sci., 148, 93, 10.1016/0304-3975(95)00057-4
Gardi, 2009, Mutual exclusion scheduling with interval graphs or related classes. I, Discrete Appl. Math., 157, 19, 10.1016/j.dam.2008.04.016
Baker, 1996, Mutual exclusion scheduling, Theoret. Comput. Sci., 162, 225, 10.1016/0304-3975(96)00031-X
Jansen, 2003, The mutual exclusion scheduling problem for permutation and comparability graphs, Inform. and Comput., 180, 71, 10.1016/S0890-5401(02)00028-7
Hansen, 1993, Bounded vertex colorings of graphs, Discrete Math., 111, 305, 10.1016/0012-365X(93)90165-P
Bampis, 2010, Bounded max-colorings of graphs, vol. 6506, 353
Finke, 2008, Batch processing with interval graph compatibilities between tasks, Discrete Appl. Math., 156, 556, 10.1016/j.dam.2006.03.039
Boudhar, 2005, Scheduling on a batch processing machine with split compatibility graphs, J. Math. Model. Algorithms, 4, 391, 10.1007/s10852-005-3083-z
Boudhar, 2000, Scheduling on a batch machine with job compatibilities, Belg. J. Oper. Res. Stat. Comput. Sci., 40, 69
Nonner, 2010, Capacitated max-batching with interval graph compatibilities, vol. 6139, 176
Cohen, 1991, NP-completeness of graph decomposition problems, J. Complexity, 7, 200, 10.1016/0885-064X(91)90006-J
Lonc, 1992, On complexity of some chain and antichain partition problems, vol. 570, 97
Alon, 1983, A note on the decomposition of graphs into isomorphic matchings, Acta Math. Hungar., 42, 221, 10.1007/BF01956769
Demange, 2007, Time slot scheduling of compatible jobs, J. Sched., 10, 111, 10.1007/s10951-006-0003-7
Escoffier, 2006, Weighted coloring: further complexity and approximability results, Inform. Process. Lett., 97, 98, 10.1016/j.ipl.2005.09.013
Murat, 2006, On the probabilistic minimum coloring and minimum k-coloring, Discrete Appl. Math., 154, 564, 10.1016/j.dam.2005.06.007
Bourgeois, 2009, Probabilistic graph-coloring in bipartite and split graphs, J. Comb. Optim., 17, 274, 10.1007/s10878-007-9112-2
Berge, 1989, Minimax relations for the partial q-colorings of a graph, Discrete Math., 74, 3, 10.1016/0012-365X(89)90193-3
Cameron, 1989, A min–max relation for the partial q-colorings of a graph. Part II: Box perfection, Discrete Math., 74, 15, 10.1016/0012-365X(89)90194-5
Alon, 1996, Source coding and graph entropies, IEEE Trans. Inform. Theory, 42, 1329, 10.1109/18.532875
Cardinal, 2012, Minimum entropy combinatorial optimization problems, Theory Comput. Syst., 51, 4, 10.1007/s00224-011-9371-2
T. Fukunaga, M.M. Halldórsson, H. Nagamochi, Robust cost colorings, in: Proceedings of the 19th Annual ACM–SIAM Symposium on Discrete Algorithms, SODA’08, 2008, pp. 1204–1212.
Gijswijt, 2007, Clique partitioning of interval graphs with submodular costs on the cliques, RAIRO Oper. Res., 41, 275, 10.1051/ro:2007024
Pemmaraju, 2005, Approximation algorithms for the max-coloring problem, vol. 3580, 1064
Epstein, 2008, On the max coloring problem, vol. 4927, 142
Nonner, 2011, Clique clustering yields a PTAS for max-coloring interval graphs, vol. 6755, 183
de Werra, 2009, Weighted coloring on planar, bipartite and split graphs: Complexity and approximation, Discrete Appl. Math., 157, 819, 10.1016/j.dam.2008.06.013
Lehmann, 2006, Combinatorial auctions with decreasing marginal utilities, Games Econom. Behav., 55, 270, 10.1016/j.geb.2005.02.006
Federgruen, 1992, The joint replenishment problem with general joint cost structures, Oper. Res., 40, 384, 10.1287/opre.40.2.384
Hajiaghayi, 2003, The facility location problem with general cost functions, Networks, 42, 42, 10.1002/net.10080
Körner, 1998, Zero-error information theory, IEEE Trans. Inform. Theory, 44, 2207, 10.1109/18.720537
Cardinal, 2008, Minimum entropy coloring, J. Comb. Optim., 16, 361, 10.1007/s10878-008-9152-2
L. Hyafil, R.L. Rivest, Graph partitioning and constructing optimal decision trees are polynomial complete problems. Rapport de Recherche 33, IRIA-Laboria, Domaine de Voluceau, Rocquencourt, 78150 Le Chesnay, France, 1973. Cited in [1].
Booth, 1976, Testing for the consecutive ones property, interval graphs, and graph planarity using PQ-tree algorithms, J. Comput. System Sci., 13, 335, 10.1016/S0022-0000(76)80045-1
Gilmore, 1964, A characterization of comparability graphs and of interval graphs, Canad. J. Math., 16, 539, 10.4153/CJM-1964-055-5
Ibarra, 2009, The clique-separator graph for chordal graphs, Discrete Appl. Math., 157, 1737, 10.1016/j.dam.2009.02.006
Dijkstra, 1959, A note on two problems in connexion with graphs, Numer. Math., 1, 269, 10.1007/BF01386390
Hochbaum, 1985, Approximation schemes for covering and packing problems in image processing and VLSI, J. ACM, 32, 130, 10.1145/2455.214106