Clinical significance of beta-lactamase induction and stable derepression in gram-negative rods

David M. Livermore1
1Department of Medical Microbiology, London Hospital Medical College, London, UK

Tóm tắt

Từ khóa


Tài liệu tham khảo

Richmond, M. H., Sykes, R. B.: Theβ-lactamases of gram-negative bacteria and their possible physiological role. Advances in Microbial Physiology 1973, 9: 31–88.

Sykes, R. B., Matthew, M.: Theβ-lactamases of gramnegative bacteria and their role in resistance toβ-lactam antibiotics. Journal of Antimicrobial Chemotherapy 1976, 2: 115–157.

Aspiotis, A., Cullmann, W., Dick, W., Stieglitz, M.: Inducibleβ-lactamases are principally responsible for the naturally occurring resistance towardsβ-lactam antibiotics inProteus vulgaris. Chemotherapy 1986, 32: 236–246.

Cullmann, W., Dalhoff, A., Dick, W.: Non-specific induction ofβ-lactamase inEnterobacter cloacae. Journal of General Microbiology 1984, 130: 1781–1786.

Sawai, T., Kanno, M., Tsukamoto, K.: Characterization of eightβ-lactamases of gram-negative bacteria. Journal of Bacteriology 1982, 152: 567–571.

Sanders, C. C.: Novel resistance selected by the new expanded-spectrum cephalosporins. Journal of Infectious Diseases 1983, 149: 585–589.

Then, R. L., Angehrn, P.: Trapping of non-hydrolyzable cephalosporins by cephalosporinases inEntercbacter cloacae andPseudomonas aeruginosa as a possible resistance mechanism. Antimicrobial Agents and Chemotherapy 1982, 21: 711–717.

Livermore, D. M.: Kinetics and significance of the activity f the Sabath and Abrahams'β-lactamaseof Pseudomonas aeruginosa against cefotaxime and cefsulodin. Journal of Antimicrobial Chemotherapy 1983, 11: 169–179.

Livermore, D. M.: Doβ-lactamases ‘trap’ cephalosporins? Journal of Antimicrobial Chemotherapy 1985, 15: 511–514.

Vu, H., Nikaido, H.: Role ofβ-lactam hydrolysis in the mechanism of resistance of aβ-lactamase-derepressedEnterobacter cloacae strain to expanded-spectrumβ-lactams. Antimicrobial Agents and Chemotherapy 1985, 27: 393–398.

Vu, H., Nikaido, H.: Role ofβ-lactam hydrolysis in the mechanism of resistance of aβ-lactamase-derepressedEnterobacter cloacae strain to expanded-spectrumβ-lactams. Antimicrobial Agents and Chemotherapy 1985, 27: 393–398.

Livermore, D. M., Yang, Y. J.: β-lactamase lability and inducer power of newerβ-lactam antibiotics in relation to their activity againstβ-lactamase inducibility mutants ofPseudomonas aeruginosa. Journal of Infectious Diseases 1987, 155: 775–782.

Bush, K., Freudenberger, J. S., Sykes, R. B.: Interactions of aztreonam and related monobactams with beta-lactamases from gram-negative bacteria. Antimicrobial Agents and Chemotherapy 1982, 22: 414–420.

Nordstrom, K., Sykes, R. B.: Induction kinetics ofβ-lactamase biosynthesis inPseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy 1974, 6: 734–740.

Minami, S., Yotsuji, A., Inone, M., Mitsuhashi, S.: Induction ofβ-lactamase by variousβ-lactam antibiotics inEnterobacter cloacae. Antimicrobial Agents and Chemotherapy 1980, 18: 382–385.

Okonogi, K., Kuno, M., Higashide, E.: Induction of βlactamase inProteus vulgaris. Journal of General Microbiology 1986, 132: 143–150.

Lindberg, F., Westman, L., Normark, S.: Regulatory components inCitrobacter freundii AmpC, β-lactamase induction. Proceedings of the National Academy of Sciences USA 1985, 82: 4620–4624.

Rosselet, A., Zimmermann, W.: Mutants ofPseudomonas aeruginosa with impairedβ-lactamase inducibility and increased sensitivity toβ-lactam antibiotics. Journal of General Microbiology 1973, 76: 455–457.

Curds, N. A. C., Eisenstadt, R. L., Rudd, C., White, A. J.: Inducible type Iβ-lactamase of gram-negative bacteria and resistance toβ-lactam antibiotics. Journal of Antimicrobial Chemotherapy 1986, 17: 51–62.

Williams, J. D.: Activity of imipenem againstPseudomonas aeruginosa andBacteroides species. Reviews of Infectious Diseases 1985, 7: S417-S425.

Hashizume, T., Yamaguchi, A., Hirata, T., Sawai, T.: Kinetic studies on the inhibition ofProteus vulgaris, β-lactamase by imipenem. Antimicrobial Agents and Chemotherapy 1984, 25: 149–151.

Jacobs, J. Y., Livermore, D. M., Davy, K. W. M.:Pseudomonas aeruginosa, β-lactamase as a defence against azlocillin, mezlocillin and piperacillin. Journal of Antimicrobial Chemotherapy 1984, 14: 221–229.

Livermore, D. M., Williams, J. D., Davy, K. W. M.: Cephalosporins resistance inPseudomonas aeruginosa, with special reference to the proposed trapping of antibiotics by beta-lactamase. Chemioterapia 1985, 4: 28–35.

Graham, W. C., Medeiros, A. A.: Antagonism of carbenicillin by cephalosprins in gram-negative bacilli. In: Nelson, J. D., Grassi, C. (ed.): Current chemotherapy and infectious disease. American Society for Microbiology, Washington, DC, 1980, p. 489–491.

Hoffmann, T. A., Cleary, T. J., Bercuson, D. H.: Effects of inducible beta-lactamase and antimicrobial resistance upon activity of newer beta-lactam antibiotics againstPseudomonas aeruginosa. Journal of Antibiotics (Tokyo) 1981, 34: 1334–1340.

Cullmann, W., Dick, W.: Cefpirome (HR810): lack of selection of beta-lactamase overproducing variants. Journal of Antibiotics (Tokyo) 1985, 38: 912–919.

Dalhoff, A., Cullmann, W.: Specificity ofβ-lactamase induction inPseudomonas aeruginosa. Journal of Antimicrobial Chemotherapy 1984, 14: 349–357.

Tausk, F., Stratton, C. W.: Effect of clavulanic acid on the activity of ticarcillin againstPseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy 1986, 30: 584–589.

Kasai, K.: Antibacterial antagonism ofβ-lactam antibiotics in experimental infections. Chemotherapy 1986, 32: 148–158.

Livermore, D. M.: Class 1β-lactamase expression inPseudomonas aeruginosa and cephalosporin resistance. Lancet 1986, i: 450.

Phillips, I.: Beta-lactamase induction and derepression. Lancet 1986, i: 801–802.

Williams, R. J., Livermore, D. M., Lindridge, M. A., Said, A. A., Williams, J. D.: Mechanisms of resistance toβ-lactam antibiotics in British isolates ofPseudomonas aeruginosa. Journal of Medical Microbiology 1984, 17: 283–293.

Gwynn, M. N., Rolinson, G.: Selection of variants of gram-negative bacteria with elevated production of type Iβ-lactamase. Journal of Antimicrobial Chemotherapy 1983, 11: 577–581.

Lindberg, F., Normark, S.: Contribution of chromosomalβ-lactamases toβ-lactam resistance in enterobacteria. Reviews of Infectious Diseases 1986, 8, Supplement 3: 292–304.

Wiedemann, B.: Genetic and biochemical basis of resistance ofEnterobacteriaceae toβ-lactam antibiotics. Journal of Antimicrobial Chemotherapy 1986, 18, Supplement B: 31–38.

Sanders, C. C., Sanders, W. E.: Type Iβ-lactamases of gram-negative bacteria: interactions withβ-lactam antibiotics. Journal of Infectious Diseases 1986, 154: 792–800.

Sanders, C. C., Sanders, W. E.: Microbial resistance to newer-generationβ-lactam antibiotics: clinical and laboratory implications. Journal of Infectious Diseases 1985, 151: 399–406.

Kirkpatrick, B., Ashby, J., Wise, R.: β-lactams and imipenem. Lancet 1986, i: 802.

Quinn, J. P., Dudek, E. J., Divencenzo, C. A., Lucks, D. A., Lerner, S. A.: Emergence of resistance to imipenem during therapy forPseudomonas aeruginosa infections. Journal of Infectious Diseases 1986, 154: 289–294.

Sanders, C. C., Sanders, W. E., Goering, R. V.: Influence of clindamycin on derepression ofβ-lactamasesin Enterobacter spp. andPseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy 1983, 24: 48–53.

Noto, T., Miyakawa, S., Oishi, H., Endo, H., Okazaki, H.: Thiolactomycin, a new antibiotic. III: In vitro antibacterial activity. Journal of Antibiotics (Tokyo) 1982, 35: 401–410.