Clinical significance and role of CXCL16 in anti-neutrophil cytoplasmic autoantibody-associated vasculitis
Tài liệu tham khảo
S.F. Chen, F.M. Wang, Z.Y. Li, F. Yu, M.H. Zhao, M. Chen, Plasma complement factor H is associated with disease activity of patients with ANCA-associated vasculitis, Arthritis Res. Ther. 17 (2015) 129, https://doi.org/10.1186/s13075-015-0656-8.
A.R. Kitching, H.J. Anders, N. Basu, E. Brouwer, J. Gordon, D.R. Jayne, J. Kullman, P.A. Lyons, P.A. Merkel, C.O.S. Savage, U. Specks, R. Kain, ANCA-associated vasculitis, Nat. Rev. Dis. Primers. 6(1) (2020) 71, https://doi.org/10.1038/s41572-020-0204-y.
C. Wang, D.Y. Chang, M. Chen, M.H. Zhao, HMGB1 contributes to glomerular endothelial cell injury in ANCA-associated vasculitis through enhancing endothelium-neutrophil interactions, J. Cell Mol. Med. 21(7) (2017) 1351–1360, https://doi.org/10.1111/jcmm.13065.
I.F. Charo, R.M. Ransohoff, The many roles of chemokines and chemokine receptors in inflammation, N. Engl. J. Med. 354(6) (2006) 610–621, https://doi.org/10.1056/NEJMra052723.
M. Matloubian, A. David, S. Engel, J.E. Ryan, J.G. Cyster, A transmembrane CXC chemokine is a ligand for HIV-coreceptor Bonzo, Nat. Immunol. 1(4) (2000) 298–304, https://doi.org/10.1038/79738.
P. Gutwein, A. Schramme, N. Sinke, M.S. Abdel-Bakky, B. Voss, N. Obermüller, D. Kai, M. Koziolek, F. Fritzsche, M. Johannsen, K. Jung, H. Schaider, P. Altevogt, A. Ludwig, J. Pfeilschifter, G. Kristiansen, Tumoural CXCL16 expression is a novel prognostic marker of longer survival times in renal cell cancer patients, Eur. J. Cancer. 45(3) (2009) 478–489, https://doi.org/10.1016/j.ejca.2008.10.023.
A. Collado, P. Marques, P. Escudero, C. Rius, E. Domingo, S. Martinez-Hervas, J.T. Real, J.F. Ascaso, L. Piqueras, M.J. Sanz, Functional role of endothelial CXCL16/CXCR6-platelet-leucocyte axis in angiotensin II-associated metabolic disorders, Cardiovasc Res. 114(13) (2018) 1764–1775, https://doi.org/10.1093/cvr/cvy135.
T. Sato, H. Thorlacius, B. Johnston, T.L. Staton, W. Xiang, D.R. Littman, E.C. Butcher, Role for CXCR6 in recruitment of activated CD8+ lymphocytes to inflamed liver, J. Immunol. 174(1) (2005) 277–283, https://doi.org/10.4049/jimmunol.174.1.277.
X.F. Jiang, T. Shimaoka, S. Kojo, M. Harada, H. Watarai, H. Wakao, N. Ohkohchi, S. Yonehara, M. Taniguchi, K. Seino, Cutting Edge: Critical role of CXCL16/CXCR6 in NKT cell trafficking in allograft tolerance, J. Immunol. 175(4) (2005) 2051–2055, https://doi.org/10.4049/jimmunol.175.4.2051.
O. Borst, P. Munzer, S. Gatidis, E.M. Schmidt, T. Schonberger, E. Schmid, S.T. Towhid, K. Stellos, P. Seizer, A.E. May, F. Lang, M. Gawaz, The inflammatory chemokine CXC motif ligand 16 triggers platelet activation and adhesion via CXC motif receptor 6-dependent phosphatidylinositide 3-kinase/Akt signaling, Circ. Res. 111(10) (2012) 1297–1307, https://doi.org/10.1161/CIRCRESAHA.112.276444.
R. Luo, Y. Yang, Y.C. Cheng, D. Chang, T.T. Liu, Y.Q. Li, W. Dai, M.Y. Zuo, Y.L. Xu, C.X. Zhang, S.W. Ge, G. Xu, Plasma chemokine CXC motif-ligand 16 as a predictor of renal prognosis in immunoglobulin A nephropathy, Ann. Transl. Med. 8(6) (2020) 381, https://doi.org/10.21037/atm.2020.02.05.
A. Ludwig, C. Weber, Transmembrane chemokines: versatile 'special agents' in vascular inflammation, Thromb. Haemost. 97 (5) (2007) 694–703, https://doi.org/10.1160/TH07-01-0035.
L. Halbwachs, P. Lesavre, Endothelium-neutrophil interactions in ANCA-associated diseases, J. Am. Soc. Nephrol. 23(9) (2012) 1449–1461, https://doi.org/10.1681/ASN.2012020119.
S. Gupta, M.J. Kaplan, The role of neutrophils and NETosis in autoimmune and renal diseases, Nat. Rev. Nephrol. 12(7) (2016) 402–413, https://doi.org/10.1038/nrneph.2016.71.
L.E. Hind, P.N. Ingram, D.J. Beebe, A. Huttenlocher, Interaction with an endothelial lumen increases neutrophil lifetime and motility in response to P aeruginosa, Blood. 132(17) (2018) 1818–1828, https://doi.org/10.1182/blood-2018-05-848465.
D.S. Gaul, J. Weber, L.J. van Tits, S. Sluka, L. Pasterk, M.F. Reiner, N. Calatayud, C. Lohmann, R. Klingenberg, J. Pahla, D. Vdovenko, F.C. Tanner, G.G. Camici, U. Eriksson, J. Auwerx, F. Mach, S. Windecker, N. Rodondi, T.F. Luscher, S. Winnik, C.M. Matter, Loss of Sirt3 accelerates arterial thrombosis by increasing formation of neutrophil extracellular traps and plasma tissue factor activity, Cardiovasc Res. 114(8) (2018) 1178–1188, https://doi.org/10.1093/cvr/cvy036.
J.C. Jennette, R.J. Falk, P.A. Bacon, N. Basu, M.C. Cid, F. Ferrario, L.F. Flores-Suarez, W.L. Gross, L. Guillevin, E.C. Hagen, G.S. Hoffman, D.R. Jayne, C.G. Kallenberg, P. Lamprecht, C.A. Langford, R.A. Luqmani, A.D. Mahr, E.L. Matteson, P.A. Merkel, S. Ozen, C.D. Pusey, N. Rasmussen, A.J. Rees, D.G. Scott, U. Specks, J.H. Stone, K. Takahashi, R.A. Watts, 2012 Revised international chapel hill consensus conference nomenclature of vasculitides, Arthritis Rheum. 65
(1) (2013) 1-11, https://doi.org/10.1002/art.37715.
X. Kong, Y. Ma, J. Chen, Q. Luo, X. Yu, Y. Li, J. Xu, S. Huang, L. Wang, W. Huang, M. Wang, G.B. Xu, L.X. Zhang, L. Zuo, H.Y. Wang, Evaluation of the chronic kidney disease epidemiology collaboration equation for estimating glomerular filtration rate in the Chinese population, Nephrol. Dial Transplant. (3) (2013) 641–651, https://doi.org/10.1093/ndt/gfs491.
S.F. Chen, F.M. Wang, Z.Y. Li, F. Yu, M. Chen, M.H. Zhao, Complement factor H inhibits anti-neutrophil cytoplasmic autoantibody-induced neutrophil activation by interacting with neutrophils, Front Immunol. 9 (2018) 559, https://doi.org/10.3389/fimmu.2018.00559.
Y. Zhang, W. Shi, S. Tang, J. Li, S. Yin, X. Gao, L. Wang, L. Zou, J. Zhao, Y. Huang, L. Shan, Gounni, A.S., Y. Wu, F. Yuan, J. Zhang, The influence of cathelicidin LL37 in human anti-neutrophils cytoplasmic antibody (ANCA)-associated vasculitis, Arthritis Res. Ther. 15(5) (2013) R161, https://doi.org/10.1186/ar4344.
S.C. Satchell, C.H. Tasman, A. Singh, L. Ni, J. Geelen, C.J. von Ruhland, M.J. O'Hare, M.A. Saleem, L.P. van den Heuvel, P.W. Mathieson, Conditionally immortalized human glomerular endothelial cells expressing fenestrations in response to VEGF, Kidney Int. 69(9) (2006) 1633–1640, https://doi.org/10.1038/sj.ki.5000277.
S.A. Ibrahim, A. Kulshrestha, G.K. Katara, M.A. Amin, K.D. Beaman, Cancer derived peptide of vacuolar ATPase 'a2′ isoform promotes neutrophil migration by autocrine secretion of IL-8, Sci. Rep. 6 (2016) 36865, https://doi.org/10.1038/srep36865.
Y. Li, Y. Jin, B. Liu, D. Lu, M. Zhu, Y. Jin, M.A. McNutt, Y. Yin, PTENalpha promotes neutrophil chemotaxis through regulation of cell deformability, Blood. 133(19) (2019) 2079–2089, https://doi.org/10.1182/blood-2019-01-899864.
G.E. Garcia, L.D. Truong, P. Li, P. Zhang, R.J. Johnson, C.B. Wilson, L. Feng, Inhibition of CXCL16 attenuates inflammatory and progressive phases of anti-glomerular basement membrane antibody-associated glomerulonephritis, Am. J. Pathol. 170(5) (2007) 1485–1496, https://doi.org/10.2353/ajpath.2007.060065.
W.T. Zhang, T. Hua, J.W. Li, L. Zheng, Y.F. Wang, M. Xu, G.S. Qi, CXCL16 is activated by p-JNK and is involved in H2O2-induced HK-2 cell injury via p-ERK signaling, Am. J. Transl. Res. 10(11) (2018) 3723–3732.
A.L. Rops, J. van der Vlag, C.W. Jacobs, H.B. Dijkman, J.F. Lensen, T.J. Wijnhoven, L.P. van den Heuvel, T.H. van Kuppevelt, J.H. Berden, Isolation and characterization of conditionally immortalized mouse glomerular endothelial cell lines, Kidney Int. 66(6) (2004) 2193–2201, https://doi.org/10.1111/j.1523-1755.2004.66009.x.
H.L. Yu, K.P. Kim, S.H. Park, D.J. Kim, Y.G. Kim, J.Y. Moon, S.W. Jung, J.S. Kim, K.H. Jeong, S.Y. Lee, D.H. Yang, S.J. Lim, J.T. Woo, S.Y. Rhee, S. Chon, H.Y. Choi, H.C. Park, Y. Jo, J.H. Yi, S.W. Han, S.H. Lee, Urinary chemokine C-X-C motif ligand 16 and endostatin as predictors of tubulointerstitial fibrosis in patients with advanced diabetic kidney disease, Nephrol. Dial Transplant. 36(2) (2019) 295–305, https://doi.org/10.1093/ndt/gfz168.
H.A. Mohammad, F. Ahmed, H.D. Salah, M.W. Salah, A.J. Hassan, Serum-soluble CXCL16 in juvenile systemic lupus erythematosus: a promising predictor of disease severity and lupus nephritis, Clin. Rheumatol. 37 (2018) 3025–3032, https://doi.org/10.1007/s10067-018-4203-2.
T. Al-Hussain, M.H. Hussein, W. Conca, H.A. Mana, M. Akhtar, Pathophysiology of ANCA-associated Vasculitis, Adv. Anat. Pathol. 24 (2017) 226–234, https://doi.org/10.1097/PAP.0000000000000154.
K. Reinhart, O. Bayer, F. Brunkhorst, M. Meisner, Markers of endothelial damage in organ dysfunction and sepsis, Crit. Care Med. 30(5 Suppl) (2002) S302–S312, https://doi.org/10.1097/00003246-200205001-00021.
M.M. Gaida, F. Gunther, C. Wagner, H. Friess, N.A. Giese, J. Schmidt, G.M. Hansch, M.N. Wente, Expression of the CXCR6 on polymorphonuclear neutrophils in pancreatic carcinoma and in acute, localized bacterial infections, Clin. Exp. Immunol. 154(2) (2008) 216–223, https://doi.org/10.1111/j.1365-2249.2008.03745.x.
O. Hofnagel, T. Engel, N.J. Severs, H. Robenek, I. Buers, SR-PSOX at sites predisposed to atherosclerotic lesion formation mediates monocyte-endothelial cell adhesion, Atherosclerosis. 217(2) (2011) 371–378, https://doi.org/10.1016/j.atherosclerosis.2011.04.021.
T. Nakayama, K. Hieshima, D. Izawa, Y. Tatsumi, A. Kanamaru, O. Yoshie, Cutting edge: profile of chemokine receptor expression on human plasma cells accounts for their efficient recruitment to target tissues, J. Immunol. 170(3) (2003) 1136–40, https://doi.org/10.4049/jimmunol.170.3.1136.
C.H. Kim, E.J. Kunkel, J. Boisvert, B. Johnston, J.J. Campbell, M.C. Genovese, H.B. Greenberg, E.C. Butcher, Bonzo/CXCR6 expression defines type 1–polarized T-cell subsets with extralymphoid tissue homing potential, J. Clin. Invest. 107(5) (2001) 595–601, https://doi.org/10.1172/JCI11902.
M.C. Izquierdo, C. Martin-Cleary, B. Fernandez-Fernandez, U. Elewa, M.D. Sanchez-Nino, J.J. Carrero, A. Ortiz, CXCL16 in kidney and cardiovascular injury, Cytokine Growth Factor Rev. 25(3) (2014) 317–25, https://doi.org/10.1016/j.cytogfr.2014.04.002.
B. Woehrl, M. Klein, T. Rupprecht, H. Schmetzer, B. Angele, H. Hacker, G. Hacker, H.W. Pfister, U. Koedel, CXCL16 contributes to neutrophil recruitment to cerebrospinal fluid in pneumococcal meningitis, J. Infect. Dis. 202(9) (2010) 1389–1396, https://doi.org/10.1086/656532.
P.A. Monach, R.L. Warner, G. Tomasson, U. Specks, J.H. Stone, L. Ding, F.C. Fervenza, B.J. Fessler, G.S. Hoffman, D. Ikle, C.G. Kallenberg, J. Krischer, C.A. Langford, M. Mueller, P. Seo, E.W. St Clair, R. Spiera, N. Tchao, S.R. Ytterberg, K.J. Johnson, P.A. Merkel, Serum proteins reflecting inflammation, injury and repair as biomarkers of disease activity in ANCA-associated vasculitis, Ann. Rheum Dis. 72(8) (2013) 1342–50, https://doi.org/10.1136/annrheumdis-2012-201981.
A.R. Prisco, M.R. Prisco, B.E. Carlsonand, A.S. Greene, TNF-alpha increases endothelial progenitor cell adhesion to the endothelium by increasing bond expression and affinity, Am. J. Physiol. Heart Circ. Physiol. 308(11) (2015) H1368–H1381, https://doi.org/10.1152/ajpheart.00496.2014.
H.E. Gruber, E. Marrero, J.A. Ingram, G.L. Hoelscherand, E.N. Hanley, The chemokine, CXCL16, and its receptor, CXCR6, are constitutively expressed in human annulus fibrosus and expression of CXCL16 is up-regulated by exposure to IL-1ß in vitro, Biotech. Histochem. 92(1) (2017) 7–14, https://doi.org/10.1080/10520295.2016.1237672.
Y.H. Wang, Y.Y. Dong,W.M. Wang, X.Y. Xie, Z.M. Wang, R.X. Chen, J. Chen, D.M. Gao, J.F. Cuiand, Z.G. Ren, Vascular endothelial cells facilitated HCC invasion and metastasis through the Akt and NF-κB pathways induced by paracrine cytokines, J. Exp. Clin. Cancer Res. 32(1) (2013) 51–51. https://doi.org/10.1186/1756-9966-32-51.
M. Choi, A. Schreiber, C. Eulenberg-Gustavus, C. Scheidereit, J. Kamps, R. Kettritz, Endothelial NF-κB Blockade Abrogates ANCA-Induced GN, J. Am. Soc. Nephrol. 28(11) (2017) 3191–3204, https://doi.org/10.1681/ASN.2016060690.