Clinical implications of cardiovascular outcome trials in type 2 diabetes

Herz - Tập 44 - Trang 192-202 - 2019
L. G. Mellbin1,2, A. Wang1, L. Rydén1
1Cardiology Unit, Department of Medicine K2, Karolinska Institutet, Stockholm, Sweden
2Heart and Vascular Theme, Karolinska University Hospital, Stockholm, Sweden

Tóm tắt

Cardiovascular disease (CVD) is the main reason for premature death in patients with type 2 diabetes. Hyperglycemia, the hallmark of diabetes, has long been considered the link between diabetes and CVD, and many trials focused on preventing CVD manifestations by means of tight glucose control. However, diabetes is a multifactorial disease in which, e. g., insulin resistance, endothelial dysfunction, and factors such as hypertension and dyslipidemia contribute. Thus, treatment needs to be multifactorial and take cardiovascular aspects into account. Newer classes of drugs, originally launched for glucose lowering, among them dipeptidyl-peptidase (DPP)-4 inhibitors, sodium–glucose cotransporter (SGLT)-2 inhibitors, and glucagon-like peptide (GLP)-1 receptor agonists, have been studied in large cardiovascular outcome trials (CVOT). Several SGLT-2 inhibitors and GLP-1 receptor agonists are associated with a reduction of cardiovascular events (cardiovascular death, nonfatal myocardial infarction, and nonfatal stroke). Although the mechanisms behind the effects are not fully understood, an important reason for the benefits of SGLT-2 inhibitors seems be a reduction in heart failure, while GLP-1 receptor agonists may retard the development of the atherosclerotic vascular disease or may be effective by stabilizing plaques. The outcomes of these studies have been taken into account in recently issued guidelines and an important task for diabetologists, cardiologists, and general practitioners is to incorporate the findings of these trials into clinical practice.

Tài liệu tham khảo

International Diabetes Federation (2017) IDF Diabetes Atlas Eighth Edition (http://www.diabetesatlas.org/.) Biorck G, Sievers J, Blomqvist G (1958) Studies on myocardial infarction in Malmo 1935–1954. III. Follow-up studies from a hospital material. Acta Med Scand 162(2):81–97 Ritsinger V, Saleh N, Lagerqvist B, Norhammar A (2015) High event rate after a first percutaneous coronary intervention in patients with diabetes mellitus: results from the Swedish coronary angiography and angioplasty registry. Circ Cardiovasc Interv 8(6):e2328 Årsrapporter S. http://www.ucruuse/swedeheart/. Accessed 24 January 2019 Shah AD, Langenberg C, Rapsomaniki E et al (2015) Type 2 diabetes and incidence of cardiovascular diseases: a cohort study in 1.9 million people. Lancet Diabetes Endocrinol 3(2):105–113 Johansson I, Dahlstrom U, Edner M et al (2015) Risk factors, treatment and prognosis in men and women with heart failure with and without diabetes. Heart 101(14):1139–1148 Levine S (1929) Coronary thrombosis: its various clinical features. Medicine 8:245 Cryer PE (2009) Preventing hypoglycaemia: what is the appropriate glucose alert value? Diabetologia 52(1):35–37 Kuusisto J, Mykkanen L, Pyorala K, Laakso M (1994) NIDDM and its metabolic control predict coronary heart disease in elderly subjects. Diabetes 43(8):960–967 Stratton IM, Adler AI, Neil HA et al (2000) Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. BMJ 321(7258):405–412 UKPDS33 (1998) Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group. Lancet 352(9131):837–853 Holman RR, Paul SK, Bethel MA et al (2008) 10-year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med 359(15):1577–1589 UKPDS34 (1998) Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). UK Prospective Diabetes Study (UKPDS) Group. Lancet 352(9131):854–865 Patel A, MacMahon S, Chalmers J et al (2008) Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med 358(24):2560–2572 Gerstein HC, Miller ME, Byington RP et al (2008) Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med 358(24):2545–2559 Duckworth W, Abraira C, Moritz T et al (2009) Glucose control and vascular complications in veterans with type 2 diabetes. N Engl J Med 360(2):129–139 Skyler JS, Bergenstal R, Bonow RO et al (2009) Intensive glycemic control and the prevention of cardiovascular events: implications of the ACCORD, ADVANCE, and VA diabetes trials: a position statement of the American Diabetes Association and a scientific statement of the American College of Cardiology Foundation and the American Heart Association. Circulation 119(2):351–357 Seaquist ER, Miller ME, Bonds DE et al (2012) The impact of frequent and unrecognized hypoglycemia on mortality in the ACCORD study. Diabetes Care 35(2):409–414 Bonds DE, Miller ME, Bergenstal RM et al (2010) The association between symptomatic, severe hypoglycaemia and mortality in type 2 diabetes: retrospective epidemiological analysis of the ACCORD study. BMJ 340:b4909 Mellbin LG, Ryden L, Riddle MC et al (2013) Does hypoglycaemia increase the risk of cardiovascular events? A report from the ORIGIN trial. Eur Heart J 34(40):3137–3144 Ryden L, Grant PJ, Anker SD et al (2013) ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD: the Task Force on diabetes, pre-diabetes, and cardiovascular diseases of the European Society of Cardiology (ESC) and developed in collaboration with the European Association for the Study of Diabetes (EASD). Eur Heart J 34(39):3035–3087 Ray KK, Seshasai SR, Wijesuriya S et al (2009) Effect of intensive control of glucose on cardiovascular outcomes and death in patients with diabetes mellitus: a meta-analysis of randomised controlled trials. Lancet 373(9677):1765–1772 Dormandy JA, Charbonnel B, Eckland DJ et al (2005) Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial In macroVascular Events): a randomised controlled trial. Lancet 366(9493):1279–1289 Davies MJ, D’Alessio DA, Fradkin J et al (2018) Management of hyperglycaemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia 61(12):2461–2498 Bays HE, Chapman RH, Grandy S et al (2007) The relationship of body mass index to diabetes mellitus, hypertension and dyslipidaemia: comparison of data from two national surveys. Int J Clin Pract 61(5):737–747 Libby P, Ridker PM, Maseri A (2002) Inflammation and atherosclerosis. Circulation 105(9):1135–1143 Jacobs MJ, Kleisli T, Pio JR et al (2005) Prevalence and control of dyslipidemia among persons with diabetes in the United States. Diabetes Res Clin Pract 70(3):263–269 Stamler J, Vaccaro O, Neaton JD, Wentworth D (1993) Diabetes, other risk factors, and 12-yr cardiovascular mortality for men screened in the Multiple Risk Factor Intervention Trial. Diabetes Care 16(2):434–444 Gaede P, Vedel P, Larsen N et al (2003) Multifactorial intervention and cardiovascular disease in patients with type 2 diabetes. N Engl J Med 348(5):383–393 Gaede P, Lund-Andersen H, Parving HH, Pedersen O (2008) Effect of a multifactorial intervention on mortality in type 2 diabetes. N Engl J Med 358(6):580–591 Gaede P, Oellgaard J, Carstensen B et al (2016) Years of life gained by multifactorial intervention in patients with type 2 diabetes mellitus and microalbuminuria: 21 years follow-up on the Steno-2 randomised trial. Diabetologia 59(11):2298–2307 Oellgaard J, Gaede P, Rossing P et al (2018) Reduced risk of heart failure with intensified multifactorial intervention in individuals with type 2 diabetes and microalbuminuria: 21 years of follow-up in the randomised Steno-2 study. Diabetologia 61(8):1724–1733 Nissen SE, Wolski K (2007) Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N Engl J Med 356(24):2457–2471 Green JB, Bethel MA, Armstrong PW et al (2015) Effect of sitagliptin on cardiovascular outcomes in type 2 diabetes. N Engl J Med 373(3):232–242 White WB, Cannon CP, Heller SR et al (2013) Alogliptin after acute coronary syndrome in patients with type 2 diabetes. N Engl J Med 369(14):1327–1335 Scirica BM, Bhatt DL, Braunwald E et al (2013) Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. N Engl J Med 369(14):1317–1326 Rosenstock J, Perkovic V, Johansen OE et al (2018) Effect of Linagliptin vs placebo on major cardiovascular events in adults with type 2 diabetes and high cardiovascular and renal risk: the CARMELINA randomized clinical trial. JAMA. https://doi.org/10.1001/jama.2018.18269 Marx N, McGuire DK (2016) Sodium-glucose cotransporter-2 inhibition for the reduction of cardiovascular events in high-risk patients with diabetes mellitus. Eur Heart J 37(42):3192–3200 Zinman B, Wanner C, Lachin JM et al (2015) Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med 373(22):2117–2128 Ryden L, Shahim B, Mellbin L (2016) Clinical implications of cardiovascular outcome trials in type 2 diabetes: from DCCT to EMPA-REG. Clin Ther 38(6):1279–1287 Neal B, Perkovic V, Mahaffey KW et al (2017) Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med 377(7):644–657 Fralick M, Kim SC, Schneeweiss S et al (2019) Fracture risk after initiation of use of canagliflozin: a cohort study. Ann Intern Med. https://doi.org/10.7326/M18-0567 Wiviott SD, Raz I, al Bonaca MPet (2018) Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med. https://doi.org/10.1056/nejmoa1812389 Drucker DJ (2016) The cardiovascular biology of Glucagon-like peptide-1. Cell Metab 24(1):15–30 Marso SP, Daniels GH, Brown-Frandsen K et al (2016) Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med 375(4):311–322 Marso SP, Bain SC, Consoli A et al (2016) Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med. https://doi.org/10.1056/nejmoa1607141 Wang T, Hong JL, Gower EW et al (2018) Incretin-based therapies and diabetic retinopathy: real-world evidence in older U.S. Adults. Diabetes Care 41(9):1998–2009 Hernandez AF, Green JB, Janmohamed S et al (2018) Albiglutide and cardiovascular outcomes in patients with type 2 diabetes and cardiovascular disease (Harmony Outcomes): a double-blind, randomised placebo-controlled trial. Lancet 392(10157):1519–1529 Holman RR, Bethel MA, Mentz RJ et al (2017) Effects of once-weekly exenatide on cardiovascular outcomes in type 2 diabetes. N Engl J Med 377(13):1228–1239 Pfeffer MA, Claggett B, Diaz R et al (2015) Lixisenatide in patients with type 2 diabetes and acute coronary syndrome. N Engl J Med 373(23):2247–2257 Eriksson JW, Bodegard J, Nathanson D et al (2016) Sulphonylurea compared to DPP-4 inhibitors in combination with metformin carries increased risk of severe hypoglycemia, cardiovascular events, and all-cause mortality. Diabetes Res Clin Pract 117:39–47 Gerstein HC, Bosch J, Dagenais GR et al (2012) Basal insulin and cardiovascular and other outcomes in dysglycemia. N Engl J Med 367(4):319–328 Marso SP, McGuire DK, Zinman B et al (2017) Efficacy and safety of degludec versus glargine in type 2 diabetes. N Engl J Med 377(8):723–732 Kernan WN, Viscoli CM, Furie KL et al (2016) Pioglitazone after ischemic stroke or transient Ischemic attack. N Engl J Med 374(14):1321–1331 Turnbull FM, Abraira C, Anderson RJ et al (2009) Intensive glucose control and macrovascular outcomes in type 2 diabetes. Diabetologia 52(11):2288–2298