Đặc điểm lâm sàng, hormone và di truyền của 25 bệnh nhân Trung Quốc mắc hội chứng hypogonadotropic vô căn
Tóm tắt
Từ khóa
Tài liệu tham khảo
Bianco S, Kaiser U. The genetic and molecular basis of idiopathic hypogonadotropic hypogonadism. Nat Rev Endocrinol. 2009;5(10):569–76.
Beate K, Joseph N, Nicolas DR, Wolfram K. Genetics of isolated hypogonadotropic hypogonadism: role of GnRH receptor and other genes. Int J Endocrinol. 2012;2012:147893.
Miraoui H, Dwyer A, Sykiotis G, Plummer L, Chung W, Feng B, et al. Mutations in FGF17, IL17RD, DUSP6, SPRY4, and FLRT3 are identified in individuals with congenital hypogonadotropic hypogonadism. Am J Hum Genet. 2013;92(5):725–43.
Jiangfeng M, Xueyan W, Jingtao D. Interpretation of expert consensus on diagnosis and treatment of idiopathic hypogonadotropic hypogonadism. Chin J Intern Med. 2016;36(3):204–7.
Pitteloud N, Meysing A, Quinton R, Acierno J, Dwyer A, Plummer L, et al. Mutations in fibroblast growth factor receptor 1 cause Kallmann syndrome with a wide spectrum of reproductive phenotypes. Mol Cell Endocrinol. 2006;254–255:60–9.
Hutson J, Li R, Southwell B, Newgreen D, Cousinery M. Regulation of testicular descent. Pediatr Surg Int. 2015;31(4):317–25.
Teixeira L, Guimiot F, Dodé C, Fallet-Bianco C, Millar R, Delezoide A, et al. Defective migration of neuroendocrine GnRH cells in human arrhinencephalic conditions. J Clin Invest. 2010;120(10):3668–72.
Forni P, Taylor-Burds C, Melvin V, Williams T, Williams T, Wray S. Neural crest and ectodermal cells intermix in the nasal placode to give rise to GnRH-1 neurons, sensory neurons, and olfactory ensheathing cells. J Neurosci. 2011;31(18):6915–27.
Sato N, Katsumata N, Kagami M, Hasegawa T, Hori N, Kawakita S, et al. Clinical assessment and mutation analysis of Kallmann syndrome 1 (KAL1) and fibroblast growth factor receptor 1 (FGFR1, or KAL2) in five families and 18 sporadic patients. J Clin Endocrinol Metab. 2004;89(3):1079–88.
Fan Y, Zhang X, Wang L, Wang R, Huang Z, Sun Y, et al. Diagnostic application of targeted next-generation sequencing of 80 genes associated with disorders of sexual development. Sci Rep. 2017;7:44536.
Cox K, Oliveira L, Plummer L, Corbin B, Gardella T, Balasubramanian R, et al. Modeling mutant/wild-type interactions to ascertain pathogenicity of PROKR2 missense variants in patients with isolated GnRH deficiency. Hum Mol Genet. 2018;27(2):338–50.
Sarfati J, Dodé C, Young J. Kallmann syndrome caused by mutations in the PROK2 and PROKR2 genes: pathophysiology and genotype-phenotype correlations. Front Horm Res. 2010;39:121–32.
Cole L, Sidis Y, Zhang C, Quinton R, Plummer L, Pignatelli D, et al. Mutations in prokineticin 2 and prokineticin receptor 2 genes in human gonadotrophin-releasing hormone deficiency: molecular genetics and clinical spectrum. J Clin Endocrinol Metab. 2008;93(9):3551–9.
Dodé C, Teixeira L, Levilliers J, Fouveaut C, Bouchard P, Kottler M, et al. Kallmann syndrome: mutations in the genes encoding prokineticin-2 and prokineticin receptor-2. PLoS Genet. 2006;2(10):e175.
Monnier C, Dodé C, Fabre L, Teixeira L, Labesse G, Pin J, et al. PROKR2 missense mutations associated with Kallmann syndrome impair receptor signalling activity. Hum Mol Genet. 2009;18(1):75–81.
Semple R, Topaloglu A. The recent genetics of hypogonadotrophic hypogonadism - novel insights and new questions. Clin Endocrinol. 2010;72(4):427–35.
Dodé C, Levilliers J, Dupont J, De Paepe A, Le Dû N, Soussi-Yanicostas N, et al. Loss-of-function mutations in FGFR1 cause autosomal dominant Kallmann syndrome. Nat Genet. 2003;33(4):463–5.
Gonçalves C, Bastos M, Pignatelli D, Borges T, Aragüés J, Fonseca F, et al. Novel FGFR1 mutations in Kallmann syndrome and normosmic idiopathic hypogonadotropic hypogonadism: evidence for the involvement of an alternatively spliced isoform. Fertil Steril. 2015;104(5):1261–1267.e1261.
Jarzabek K, Wolczynski S, Lesniewicz R, Plessis G, Kottler M. Evidence that FGFR1 loss-of-function mutations may cause variable skeletal malformations in patients with Kallmann syndrome. Adv Med Sci. 2012;57(2):314–21.
Xu H, Niu Y, Wang T, Liu S, Xu H, Wang S, et al. Novel FGFR1 and KISS1R mutations in Chinese Kallmann syndrome males with cleft lip/palate. Biomed Res Int. 2015;2015:649698.
Costa-Barbosa F, Balasubramanian R, Keefe K, Shaw N, Al-Tassan N, Plummer L, et al. Prioritizing genetic testing in patients with Kallmann syndrome using clinical phenotypes. J Clin Endocrinol Metab. 2013;98(5):E943–53.
Kim H, Kurth I, Lan F, Meliciani I, Wenzel W, Eom S, et al. Mutations in CHD7, encoding a chromatin-remodeling protein, cause idiopathic hypogonadotropic hypogonadism and Kallmann syndrome. Am J Hum Genet. 2008;83(4):511–9.
Bergman J, Janssen N, Hoefsloot L, Jongmans M, Hofstra R, van Ravenswaaij-Arts C. CHD7 mutations and CHARGE syndrome: the clinical implications of an expanding phenotype. J Med Genet. 2011;48(5):334–42.
Legendre M, Rodriguez-Ballesteros M, Rossi M, Abadie V, Amiel J, Revencu N, et al. CHARGE syndrome: a recurrent hotspot of mutations in CHD7 IVS25 analyzed by bioinformatic tools and minigene assays. Eur J Hum Genet. 2018;26(2):287–92.
Jongmans M, van Ravenswaaij-Arts C, Pitteloud N, Ogata T, Sato N, Claahsen-van der Grinten H, et al. CHD7 mutations in patients initially diagnosed with Kallmann syndrome--the clinical overlap with CHARGE syndrome. Clin Genet. 2009;75(1):65–71.
Hanchate N, Giacobini P, Lhuillier P, Parkash J, Espy C, Fouveaut C, et al. SEMA3A, a gene involved in axonal pathfinding, is mutated in patients with Kallmann syndrome. PLoS Genet. 2012;8(8):e1002896.
Georgopoulos N, Koika V, Galli-Tsinopoulou A, Spiliotis B, Adonakis G, Keramida M, et al. Renal dysgenesis and KAL1 gene defects in patients with sporadic Kallmann syndrome. Fertil Steril. 2007;88(5):1311–7.
Sykiotis G, Plummer L, Hughes V, Au M, Durrani S, Nayak-Young S, et al. Oligogenic basis of isolated gonadotropin-releasing hormone deficiency. Proc Natl Acad Sci U S A. 2010;107(34):15140–4.
