Clinical applications of custom 3D printed implants in complex lower extremity reconstruction

Rishin J. Kadakia1, Colleen M. Wixted1, Nicholas B. Allen1, Andrew E. Hanselman1, Samuel B. Adams1
1Department of Orthopaedic Surgery, Duke University, Durham, USA

Tóm tắt

Three dimensional printing has greatly advanced over the past decade and has made an impact in several industries. Within the field of orthopaedic surgery, this technology has vastly improved education and advanced patient care by providing innovating tools to complex clinical problems. Anatomic models are frequently used for physician education and preoperative planning, and custom instrumentation can assist in complex surgical cases. Foot and ankle reconstruction is often complicated by multiplanar deformity and bone loss. 3D printing technology offers solutions to these complex cases with customized implants that conform to anatomy and patient specific instrumentation that enables precise deformity correction. The authors present four cases of complex lower extremity reconstruction involving segmental bone loss and deformity – failed total ankle arthroplasty, talus avascular necrosis, ballistic trauma, and nonunion of a tibial osteotomy. Traditional operative management is challenging in these cases and there are high complication rates. Each case presents a unique clinical scenario for which 3D printing technology allows for innovative solutions. 3D printing is becoming more widespread within orthopaedic surgery. This technology provides surgeons with tools to better tackle some of the more challenging clinical cases especially within the field of foot and ankle surgery.

Từ khóa


Tài liệu tham khảo

Eltorai AE, Nguyen E, Daniels AH. Three-dimensional printing in orthopedic surgery. Orthopedics. 2015;38(11):684–7.

Jamroz W, Szafraniec J, Kurek M, Jachowicz R. 3D printing in pharmaceutical and medical applications - recent achievements and challenges. Pharm Res. 2018;35(9):176.

Takeyasu Y, Oka K, Miyake J, Kataoka T, Moritomo H, Murase T. Preoperative, computer simulation-based, three-dimensional corrective osteotomy for cubitus varus deformity with use of a custom-designed surgical device. J Bone Joint Surg Am. 2013;95(22):e173.

Schwarzkopf R, Brodsky M, Garcia GA, Gomoll AH. Surgical and functional outcomes in patients undergoing Total knee replacement with patient-specific implants compared with “off-the-shelf” implants. Orthop J Sports Med. 2015;3(7):2325967115590379.

Wan L, Wu G, Cao P, Li K, Li J, Zhang S. Curative effect and prognosis of 3D printing titanium alloy trabecular cup and pad in revision of acetabular defect of hip joint. Exp Ther Med. 2019;18(1):659–63.

Kim JW, Lee Y, Seo J, et al. Clinical experience with three-dimensional printing techniques in orthopedic trauma. J Orthop Sci. 2018;23(2):383–8.

Jastifer J, Gustafson P. Three-dimensional printing and surgical simulation for preoperative planning of deformity correction in foot and ankle surgery. J Foot Ankle Surg. 2017;56(1):191–5.

Zhang Y, Xiao X, Xiao Y, Chen X. Efficacy and prognosis of 3D printing Technology in Treatment of high energy trans-Syndesmotic ankle fracture dislocation - “log-splitter” injury. Med Sci Monit. 2019;25:4233–43.

Yao L, Wang H, Zhang F, Wang L. Minimally invasive treatment of calcaneal fractures via the sinus tarsi approach based on a 3D printing technique. Math Biosci Eng. 2019;16(3):1597–610.

Daigre J, Berlet G, Van Dyke B, Peterson K, Santrock R. Accuracy and reproducibility using patient-specific instrumentation in Total ankle Arthroplasty. Foot Ankle Int. 2017;38(4):412–8.

Hsu A, Davis W, Cohen B, Jones C. Radiographic outcomes of a preoperative CT scan-derived patient-specific Total ankle Arthroplasty. Foot Ankle Int. 2015;36(10):1163–9.

Duan X, Fan H, Wang F, He P, Yang L. Application of 3D-printed customized guides in Subtalar joint arthrodesis. Orthop Surg. 2019;11(3):405–13.

Dekker TJ, Steele JR, Federer AE, Hamid KS, Adams SB Jr. Use of patient-specific 3D-printed titanium implants for complex foot and ankle limb salvage, deformity correction, and arthrodesis procedures. Foot Ankle Int. 2018;39(8):916–21.

So E, Mandas V, Hlad L. Large osseous defect reconstruction using a custom three-dimensional printed titanium truss implant. J Foot Ankle Surg. 2018;57(1):196–204.