Climatologies at high resolution for the earth’s land surface areas

Scientific data - Tập 4 Số 1
Dirk Nikolaus Karger1, Olaf Conrad2, Jürgen Böhner2, Tobias Kawohl2, Holger Kreft3, Rodrigo Wilber Soria-Auza3, Niklaus E. Zimmermann4, H. Peter Linder1, Michael Kessler1
1Department of Systematic and Evolutionary Botany, University of Zurich, Zollikerstrasse 107, Zurich 8008, Switzerland
2Institute of Geography, University of Hamburg, Bundesstrasse 55, Hamburg, 20146, Germany
3Biodiversity, Macroecology & Conservation Biogeography Group, University of Göttingen, Göttingen, 37077, Germany
4Swiss Federal Research Institute WSL, Zürcherstr 111, Birmensdorf, 8903, Switzerland

Tóm tắt

AbstractHigh-resolution information on climatic conditions is essential to many applications in environmental and ecological sciences. Here we present the CHELSA (Climatologies at high resolution for the earth’s land surface areas) data of downscaled model output temperature and precipitation estimates of the ERA-Interim climatic reanalysis to a high resolution of 30 arc sec. The temperature algorithm is based on statistical downscaling of atmospheric temperatures. The precipitation algorithm incorporates orographic predictors including wind fields, valley exposition, and boundary layer height, with a subsequent bias correction. The resulting data consist of a monthly temperature and precipitation climatology for the years 1979–2013. We compare the data derived from the CHELSA algorithm with other standard gridded products and station data from the Global Historical Climate Network. We compare the performance of the new climatologies in species distribution modelling and show that we can increase the accuracy of species range predictions. We further show that CHELSA climatological data has a similar accuracy as other products for temperature, but that its predictions of precipitation patterns are better.

Từ khóa


Tài liệu tham khảo

Funk, C. et al. The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Sci. Data 2, 150066 (2015).

Biasutti, M., Yuter, S. E., Burleyson, C. D. & Sobel, A. H. Very high resolution rainfall patterns measured by TRMM precipitation radar: seasonal and diurnal cycles. Clim. Dyn 39, 239–258 (2011).

Huffman, G. J. et al. The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-Global, Multiyear, Combined-Sensor Precipitation Estimates at Fine Scales. J. Hydrometeorol. 8, 38–55 (2007).

Maraun, D. et al. Precipitation downscaling under climate change: Recent developments to bridge the gap between dynamical models and the end user. Rev. Geophys. 48, RG3003 (2010).

Wood, A. W., Leung, L. R., Sridhar, V. & Lettenmaier, D. P. Hydrologic Implications of Dynamical and Statistical Approaches to Downscaling Climate Model Outputs. Clim. Change 62, 189–216 (2004).

Wilby, R. L. et al. Statistical downscaling of general circulation model output: A comparison of methods. Water Resour. Res. 34, 2995–3008 (1998).

Schmidli, J., Frei, C. & Vidale, P. L. Downscaling from GCM precipitation: a benchmark for dynamical and statistical downscaling methods. Int. J. Climatol. 26, 679–689 (2006).

Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).

Harris, I., Jones, P. d., Osborn, T. J. & Lister, D. H. Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 Dataset. Int. J. Climatol. 34, 623–642 (2014).

Schneider, U. et al. GPCC’s new land surface precipitation climatology based on quality-controlled in situ data and its role in quantifying the global water cycle. Theor. Appl. Climatol. 115, 15–40 (2013).

Daly, C., Taylor, G. H. & Gibson, W. P. The PRISM approach to mapping precipitation and temperature. in Proc., 10th AMS Conf. on Applied Climatology 20–23 (1997).

Deblauwe, V. et al. Remotely sensed temperature and precipitation data improve species distribution modelling in the tropics. Glob. Ecol. Biogeogr 25, 443–454 (2016).

Soria-Auza, R. W. et al. Impact of the quality of climate models for modelling species occurrences in countries with poor climatic documentation: a case study from Bolivia. Ecol. Model. 221, 1221–1229 (2010).

Lawrimore, J. H. et al. An overview of the Global Historical Climatology Network monthly mean temperature data set, version 3. J. Geophys. Res. Atmospheres 116, 1–18 (2011).

Peterson, T. C. & Vose, R. S. An overview of the Global Historical Climatology Network temperature database. Bull. Am. Meteorol. Soc 78, 2837–2849 (1997).

Kalnay, E. et al. The NCEP/NCAR 40-Year Reanalysis Project. Bull. Am. Meteorol. Soc 77, 437–471 (1996).

Dee, D. P. et al. The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc 137, 553–597 (2011).

Wilby, R. L. & Wigley, T. M. L. Downscaling general circulation model output: a review of methods and limitations. Prog. Phys. Geogr. 21, 530–548 (1997).

Böhner, J., Antonic, O., Böhner, J. & Antonic, O. in Geomorphometry: Concepts, Software, Applications (eds Hengl T. & Reuter H. I. ) 195–226 (Elsevier Science, 2009).

Gerlitz, L., Conrad, O. & Böhner, J. Large-scale atmospheric forcing and topographic modification of precipitation rates over High Asia—a neural-network-based approach. Earth Syst Dynam 6, 61–81 (2015).

Berrisford, P. et al. The ERA-interim archive. ERA Rep. Ser 1–16 (2009).

Berrisford, P. et al. Atmospheric conservation properties in ERA-Interim. Q. J. R. Meteorol. Soc 137, 1381–1399 (2011).

Gao, L. et al. Statistical Downscaling of ERA-Interim Forecast Precipitation Data in Complex Terrain Using LASSO Algorithm, Statistical Downscaling of ERA-Interim Forecast Precipitation Data in Complex Terrain Using LASSO Algorithm. Adv. Meteorol. Adv. Meteorol. e472741 (2014).

Bao, X. & Zhang, F. Evaluation of NCEP-CFSR, NCEP-NCAR, ERA-Interim, and ERA-40 Reanalysis Datasets against Independent Sounding Observations over the Tibetan Plateau. J. Clim 26, 206–214 (2012).

Betts, A. K., Köhler, M. & Zhang, Y. Comparison of river basin hydrometeorology in ERA-Interim and ERA-40 reanalyses with observations. J. Geophys. Res. Atmospheres 114, D02101 (2009).

Hansen, J., Sato, M. & Ruedy, R. Radiative forcing and climate response. J. Geophys. Res. Atmospheres 102, 6831–6864 (1997).

Rolland, C. Spatial and Seasonal Variations of Air Temperature Lapse Rates in Alpine Regions. J. Clim 16, 1032–1046 (2003).

Minder, J. R., Mote, P. W. & Lundquist, J. D. Surface temperature lapse rates over complex terrain: Lessons from the Cascade Mountains. J. Geophys. Res. Atmospheres 115, D14122 (2010).

Danielson, J. J. & Gesch, D. B. Global multi-resolution terrain elevation data 2010 (GMTED2010). (US Geological Survey, 2011).

Hunter, R. D. & Meentemeyer, R. K. Climatologically Aided Mapping of Daily Precipitation and Temperature. J. Appl. Meteorol. 44, 1501–1510 (2005).

Böhner, J. General climatic controls and topoclimatic variations in Central and High Asia. Boreas 35, 279–295 (2006).

Spreen, W. C. A determination of the effect of topography upon precipitation. Eos Trans. Am. Geophys. Union 28, 285–290 (1947).

Gao, X., Xu, Y., Zhao, Z., Pal, J. S. & Giorgi, F. On the role of resolution and topography in the simulation of East Asia precipitation. Theor. Appl. Climatol. 86, 173–185 (2006).

Basist, A., Bell, G. D. & Meentemeyer, V. Statistical Relationships between Topography and Precipitation Patterns. J. Clim 7, 1305–1315 (1994).

Daly, C., Neilson, R. P. & Phillips, D. L. A Statistical-Topographic Model for Mapping Climatological Precipitation over Mountainous Terrain. J. Appl. Meteorol. 33, 140–158 (1994).

Sevruk, B. Regional Dependency of Precipitation-Altitude Relationship in the Swiss Alpsin Climatic Change at High Elevation Sites (eds Diaz, H. F., Beniston, M. & Bradley, R. S. ) 123–137 (Springer Netherlands, 1997).

Körner, C. The use of ‘altitude’ in ecological research. Trends Ecol. Evol. 22, 569–574 (2007).

Rotunno, R. & Houze, R. A. Lessons on orographic precipitation from the Mesoscale Alpine Programme. Q. J. R. Meteorol. Soc 133, 811–830 (2007).

Weischet, W. & Endlicher, W. Einführung in die allgemeine Klimatologie (2008).

Roe, G. H. Orographic Precipitation. Annu. Rev. Earth Planet. Sci. 33, 645–671 (2005).

Colle, B. A. Sensitivity of Orographic Precipitation to Changing Ambient Conditions and Terrain Geometries: An Idealized Modeling Perspective. J. Atmospheric Sci 61, 588–606 (2004).

Sinclair, M. R. A Diagnostic Model for Estimating Orographic Precipitation. J. Appl. Meteorol. 33, 1163–1175 (1994).

Smith, R. B. & Barstad, I. A Linear Theory of Orographic Precipitation. J. Atmospheric Sci 61, 1377–1391 (2004).

Oke, T. R. . Boundary layer climates. Routledge, (2002).

Stull, R. B. An introduction to boundary layer meteorology 13 (Springer Science & Business Media, 2012).

Kållberg, P. Forecast drift in ERA-Interim (European Centre for Medium Range Weather Forecasts, 2011).

Lafon, T., Dadson, S., Buys, G. & Prudhomme, C. Bias correction of daily precipitation simulated by a regional climate model: a comparison of methods. Int. J. Climatol. 33, 1367–1381 (2013).

Arnell, N. W., Hudson, D. A. & Jones, R. G. Climate change scenarios from a regional climate model: Estimating change in runoff in southern Africa. J. Geophys. Res. Atmospheres 108, 4519 (2003).

Molteni, F. A. ‘historical’ approach to the rescaling of ERA-Interim precipitation, internal technical note (European Centre for Medium Range Weather Forecasts, 2013).

Meyer-Christoffer, A. et al. GPCC Climatology Version 2015 at 0.25°: Monthly Land-Surface Precipitation Climatology for Every Month and the Total Year from Rain-Gauges built on GTS-based and Historic Data. Global Precipitation Climatology Centre at Deutscher Wetterdienst doi: 10.5676/DWD_GPCC/CLIM_M_V2015_025 (2015).

Xu, T. & Hutchinson, M. F. New Developments and Applications in the ANUCLIM Spatial Climatic and Bioclimatic Modelling Package. Env. Model Softw 40, 267–279 (2013).

Funk, C. et al. A global satellite-assisted precipitation climatology. Earth Syst Sci Data 7, 275–287 (2015).

Goddard Space Flight Center Distributed Active Archive Center (GSFC DAAC). TRMM/TMPA 3B43 TRMM and Other Sources Monthly Rainfall Product V7 (2011).

Wilson, A. M. & Jetz, W. Remotely Sensed High-Resolution Global Cloud Dynamics for Predicting Ecosystem and Biodiversity Distributions. PLOS Biol 14, e1002415 (2016).

Pruppacher, H. R., Klett, J. D. & Wang, P. K. Microphysics of Clouds and Precipitation. Aerosol Science and Technology 28, 381–382 (1998).

NASA LP DAAC. MODIS/Terra Land Surface Temperature and Emissivity Monthly L3 Global 0.05Deg CMG. NASA EOSDIS Land Processes DAAC, USGS Earth Resources Observation and Science (EROS) Center, (2015).

Stocker, T. F. et al. IPCC, 2013: climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change (2013).

Wan, Z., Zhang, Y., Zhang, Q. & Li, Z.-L. Quality assessment and validation of the MODIS global land surface temperature. Int. J. Remote Sens. 25, 261–274 (2004).

Guisan, A. & Zimmermann, N. E. Predictive habitat distribution models in ecology. Ecol. Model. 135, 147–186 (2000).

Guisan, A. & Thuiller, W. Predicting species distribution: offering more than simple habitat models. Ecol. Lett. 8, 993–1009 (2005).

Warren, D. L., Glor, R. E. & Turelli, M. Environmental Niche Equivalency Versus Conservatism: Quantitative Approaches to Niche Evolution. Evolution 62, 2868–2883 (2008).

Allouche, O., Tsoar, A. & Kadmon, R. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43, 1223–1232 (2006).

Karger, D. N. Dryad Digital Repository https://doi.org/10.5061/dryad.kd1d4 (2017)