Rủi ro giảm không gian liên quan đến khí hậu của đất nông nghiệp ở vùng bờ biển Địa Trung Hải tại Türkiye và mô hình hóa dựa trên kịch bản về sự phát triển đô thị

Springer Science and Business Media LLC - Tập 25 - Trang 13199-13217 - 2023
Oznur Isinkaralar1, Kaan Isinkaralar2, Dilara Yilmaz3
1Department of City and Regional Planning, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu, Türkiye
2Department of Environmental Engineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu, Türkiye
3Department of Landscape Architecture, Graduate School of Natural and Applied Sciences, Kastamonu University, Kastamonu, Türkiye

Tóm tắt

Các tác động của quá trình đô thị hóa và khủng hoảng khí hậu do sự nóng lên và các sự kiện khí hậu nghiêm trọng là những diễn biến quan trọng chính đe dọa hoạt động sản xuất nông nghiệp trên toàn cầu. Nhiệt độ trung bình hàng năm bề mặt tại Türkiye đã tăng 1.07 °C trong khoảng thời gian từ 2010 đến 2019, và đạt 1.4 °C vào năm 2021. Dự đoán rằng nhiệt độ sẽ tiếp tục tăng tại các khu vực ven biển của vùng Địa Trung Hải, nơi mà nhiệt độ trung bình hàng năm dao động từ 18–20 °C. Tại những quốc gia có rủi ro khí hậu cao, tính bền vững của các hoạt động nông nghiệp là một chủ đề nghiên cứu hàng đầu về nhiều phương diện, đặc biệt là an toàn thực phẩm. Trong bối cảnh này, sự thay đổi không gian và thời gian của diện tích nông nghiệp tại các thành phố nằm ven bờ Địa Trung Hải, một trong những vùng nóng nhất của đất nước, được ước tính cho năm 2040 thông qua phương pháp Tự động hóa Tế bào - Chuỗi Markov. Kết quả của mô phỏng được thực hiện trong chương trình IDRISI Selva, hai ước lượng khác nhau đã được đưa ra: mô hình xu hướng phản ánh mô hình hiện tại (MT) và mô hình nông nghiệp bền vững (MAS), trong đó các khu vực nông nghiệp bị hạn chế. Trong mô hình MT, diện tích cư trú hiện tại sẽ tăng 68.9% vào năm 2040 và 208.1% vào năm 2076. Trong mô hình MAS, mức tăng sẽ bị giới hạn ở 60.8% vào năm 2040 và 194.5% vào năm 2076.

Từ khóa

#đô thị hóa #khủng hoảng khí hậu #sản xuất nông nghiệp #Địa Trung Hải #mô hình hóa kịch bản #Tự động hóa Tế bào #Chuỗi Markov #bền vững #an toàn thực phẩm

Tài liệu tham khảo

Abbass, K., Qasim, M. Z., Song, H., Murshed, M., Mahmood, H., & Younis, I. (2022). A review of the global climate change impacts, adaptation, and sustainable mitigation measures. Environmental Science and Pollution Research,29, 42539–42559. https://doi.org/10.1007/s11356-022-19718-6 Abera, W., Tamene, L., Kassawmar, T., Mulatu, K., Kassa, H., Verchot, L., & Quintero, M. (2021). Impacts of land use and land cover dynamics on ecosystem services in the Yayo coffee forest biosphere reserve, southwestern Ethiopia. Ecosystem Services,50, 101338. https://doi.org/10.1016/j.ecoser.2021.101338 Aboelnour, M., & Engel, B. A. (2018). Application of remote sensing techniques and geographic information systems to analyze land surface temperature in response to land use/land cover change in Greater Cairo Region, Egypt. Journal of Geographic Information System,10(1), 57–88. https://doi.org/10.4236/jgis.2018.101003 Adelabu, S., Mutanga, O., Adam, E., & Cho. (2013). Exploiting machine learning algorithms for tree species classification in a semiarid woodland using RapidEye image. Journal Of Applied Remote Sensing,7, 073480. https://doi.org/10.1117/1.JRS.7.073480 Ahmad, U. S., Usman, M., Hussain, S., Jahanger, A., & Abrar, M. (2022). Determinants of renewable energy sources in Pakistan: An overview. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-022-18502-w Ahsan, F., Chandio, A. A., & Fang, W. (2020). Climate change impacts on cereal crops production in Pakistan: Evidence from cointegration analysis. International Journal of Climate Change Strategies and Management,12(2), 257–269. https://doi.org/10.1108/IJCCSM-04-2019-0020 Amir Siddique, M., Wang, Y., Xu, N., Ullah, N., & Zeng, P. (2021). The spatiotemporal implications of urbanization for urban heat islands in Beijing: A predictive approach based on CA–Markov modeling (2004–2050). Remote Sensing,13(22), 4697. https://doi.org/10.3390/rs13224697 Araya, Y. H., & Cabral, P. (2010). Analysis and modeling of Urban Land cover change in Setúbal and Sesimbra, Portugal. Remote Sensing,2(6), 1549–1563. https://doi.org/10.3390/rs2061549 Azari, M., Tayyebi, A., Helbich, M., & Reveshty, M. A. (2016). Integrating cellular automata, artificial neural network, and fuzzy set theory to simulate threatened orchards: Application to Maragheh, Iran. GIScience & Remote Sensing,53(2), 183–205. https://doi.org/10.1080/15481603.2015.1137111 Banerjee, C., & Adenaeuer, L. (2014). Up, up and away! The economics of vertical farming. Journal of Agricultural Studies,2(1), 40–60. https://doi.org/10.5296/jas.v2i1.4526 Baqa, M. F., Chen, F., Lu, L., Qureshi, S., Tariq, A., Wang, S., Jing, L., Hamza, S., & Li, Q. (2021). Monitoring and modeling the patterns and trends of urban growth using urban sprawl matrix and CA-Markov model: A case study of Karachi, Pakistan. Land,10(7), 700. https://doi.org/10.3390/land10070700 Barati, A. A., Azadi, H., Movahhed Moghaddam, S., Scheffran, J., & Dehghani Pour, M. (2023). Agricultural expansion and its impacts on climate change: evidence from Iran. Environment, Development and Sustainability, 1–27. https://doi.org/10.1007/s10668-023-02926-6 Basak, J. K., Titumir, R., & Dey, N. C. (2013). Climate change in Bangladesh: A historical analysis of temperature and rainfall data. Journal of Environment,2(2), 41–46. Bedeke, S. B. (2023). Climate change vulnerability and adaptation of crop producers in sub-saharan Africa: A review on concepts, approaches and methods. Environment Development and Sustainability,25(2), 1017–1051. https://doi.org/10.1007/s10668-022-02118-8 Bellezoni, R. A., Seto, K. C., & de Puppim, J. A. (2022). What can cities do to enhance water-energy-food nexus as a sustainable development strategy? Water-energy-food nexus and climate change in cities (pp. 39–57). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-031-05472-3_3 Buyantuyev, A., & Wu, J. (2010). Urban heat islands and landscape heterogeneity: Linking spatiotemporal variations in surface temperatures to land-cover and socio-economic patterns. Landscape Ecology,25, 17–33. https://doi.org/10.1007/s10980-009-9402-4 Chen, X., Chen, J., Shi, Y., & Yamaguchi, Y. (2012). An automated approach for updating land cover maps based on integrated change detection and classification methods. ISPRS Journal of Photogrammetry and Remote Sensing,71, 86–95. https://doi.org/10.1016/j.isprsjprs.2012.05.006 Chen, C. F., Son, N. T., Chang, N. B., Chen, C. R., Chang, L. Y., Valdez, M., Centeno, G., Thompson, C. A., & Aceituno, J. L. (2013). Multi-decadal mangrove forest change detection and prediction in Honduras, Central America, with landsat imagery and a Markov chain model. Remote Sensing,5(12), 6408–6426. https://doi.org/10.3390/rs5126408 Chun, B., & Guhathakurta, S. (2017). Daytime and nighttime urban heat islands statistical models for Atlanta. Environment and Planning B: Urban Analytics and City Science,44(2), 308–327. https://doi.org/10.1177/0265813515624685 Dai, Z., Guldmann, J. M., & Hu, Y. (2018). Spatial regression models of park and land use impacts on the urban heat island in central Beijing. Science of the Total Environment,626, 1136–1147. https://doi.org/10.1016/j.scitotenv.2018.01.165 Denman, K. L., Menon, S., Brasseur, G., Chidthaisong, A., Ciais, P., Cox, P. M., Dickinson, R. E., Hauglustaine, D., Heinze, C., Holland, E., Jacob, D., Lohmann, U., Ramachandran, S., Wofsy, S. C., & Zhang, X. (2007). Couplings between changes in the climate system and biogeochemistry United States. Dey, N. N., Rakib, A., Kafy, A., & Raikwar, V. (2021). Geospatial modelling of changes in land use/land cover dynamics using multi-layer Perceptron Markov chain model in Rajshahi City, Bangladesh. Environmental Challenges,4, 100148. https://doi.org/10.1016/j.envc.2021.100148 Diep, N. T. H., Nguyen, C. T., Diem, P. K., Hoang, N. X., & Kafy, A. A. (2022). Assessment on controlling factors of urbanization possibility in a newly developing city of the vietnamese Mekong delta using logistic regression analysis. Physics and Chemistry of the Earth Parts A/B/C,126, 103065. https://doi.org/10.1016/j.pce.2021.103065 Fadhil, A., & Kurban, T. (2022). Modelling urban sprawl with cellular automata markov chain method: The case of Kirkuk governorate. Journal of Geomatics,7(1), 58–70. https://doi.org/10.29128/geomatik.852900 Fang, J., Zhu, J., Wang, S., Yue, C., & Shen, H. (2011). Global warming, human-induced carbon emissions, and their uncertainties. Science China Earth Sciences,54, 1458–1468. https://doi.org/10.1007/s11430-011-4292-0 Fattah, M. A., Morshed, S. R., & Morshed, S. Y. (2021). Multi-layer perceptron-Markov chain-based artificial neural network for modelling future land-specific carbon emission pattern and its influences on surface temperature. SN Applied Sciences,3, 359. https://doi.org/10.1007/s42452-021-04351-8 Friedlingstein, P., Houghton, R. A., Marland, G., Hackler, J., Boden, T. A., Conway, T. J., Canadell, J. G., Raupach, M. R., Ciais, P., & Le Quéré, C. (2010). Update on CO2 emissions. Nature geoscience,3(12), 811–812. https://doi.org/10.1038/ngeo1022 Ghosh, S., & Das, A. (2017). Exploring the lateral expansion dynamics of four metropolitan cities of India using DMSP/OLS night time image. Spatial Information Research,25(6), 779–789. https://doi.org/10.1007/s41324-017-0141-3 Gong, L., Ran, Q., He, G., & Tiyip, T. (2015). A soil quality assessment under different land use types in Keriya river basin, Southern Xinjiang, China. Soil and Tillage Research,146, 223–229. https://doi.org/10.1016/j.still.2014.11.001 Gornall, J., Betts, R., Burke, E., Clark, R., Camp, J., Willett, K., & Wiltshire, A. (2010). Implications of climate change for agricultural productivity in the early twenty-first century. Philosophical Transactions of the Royal Society B: Biological Sciences,365(1554), 2973–2989. https://doi.org/10.1098/rstb.2010.0158 Guan, Q., Wang, L., & Clarke, K. C. (2005). An artificial-neural-network-based, constrained CA model for simulating urban growth. Cartography and Geographic Information Science,32(4), 369–380. https://doi.org/10.1559/152304005775194746 Guan, D., Gao, W., Watari, K., & Fukahori, H. (2008). Land use change of Kitakyushu based on landscape ecology and Markov model. Journal of Geographical Sciences,18, 455–468. https://doi.org/10.1007/s11442-008-0455-0 Guan, D., Li, H., Inohae, T., Su, W., Nagaie, T., & Hokao, K. (2011). Modeling urban land use change by the integration of cellular automaton and Markov model. Ecological Modelling,222(20–22), 3761–3772. https://doi.org/10.1016/j.ecolmodel.2011.09.009 Hanssen, S. V., Steinmann, Z. J., Daioglou, V., Čengić, M., Van Vuuren, D. P., & Huijbregts, M. A. (2022). Global implications of crop-based bioenergy with carbon capture and storage for terrestrial vertebrate biodiversity. GCB Bioenergy,14(3), 307–321. Hornsey, M. J., & Fielding, K. S. (2019). Understanding (and reducing) inaction on climate change. Social Issues and Policy Review,14(1), 3–35. https://doi.org/10.1111/sipr.12058 SM, Howden, JF, Soussana, FN, Tubiello, N, Chhetri, M, Dunlop, & H, Meinke. (2007). Adapting agriculture to climate change. Proceedings of the National Academy of Sciences of Sciences, 104(50), 19691–19696. https://doi.org/10.1073/pnas.0701890104 Huang, S., Zheng, X., Ma, L., Wang, H., Huang, Q., Leng, G., Meng, E., & Guo, Y. (2020). Quantitative contribution of climate change and human activities to vegetation cover variations based on GA-SVM model. Journal of Hydrology,584, 124687. https://doi.org/10.1016/j.jhydrol.2020.124687 Huang, Y., Yang, B., Wang, M., Liu, B., & Yang, X. (2020). Analysis of the future land cover change in Beijing using CA–Markov chain model. Environmental Earth Sciences,79(2), 1–12. https://doi.org/10.1007/s12665-019-8785-z Hyandye, C., Mandara, C. G., & Safari, J. (2015). GIS and logit regression model applications in land use/land cover change and distribution in Usangu catchment. American Journal of Remote Sensing. https://doi.org/10.11648/j.ajrs.20150301.12 IPCC. (2022). (IPCC Intergovernmental Panel on Climate Change). Climate Change 2022. Retrieved from, https://www.ipcc.ch/report/ar6/wg2/ Isinkaralar, O. (2023). Bioclimatic comfort in urban planning and modeling spatial change during 2020–2100 according to climate change scenarios in Kocaeli, Türkiye. International Journal of Environmental Science and Technology,20(7), 7775–7786. https://doi.org/10.1007/s13762-023-04992-9 Isinkaralar, O., & Varol, C. (2023). A cellular automata-based approach for spatio-temporal modeling of the city center as a complex system: The case of Kastamonu, Türkiye. Cities,132, 104073. https://doi.org/10.1016/j.cities.2022.104073 Isinkaralar, O., Varol, C., & Yilmaz, D. (2022). Digital mapping and predicting the urban growth: Integrating scenarios into cellular automata—Markov chain modeling. Applied Geomatics,14(4), 695–705. https://doi.org/10.1007/s12518-022-00464-w Istanbullu, S. N., Sevik, H., Isinkaralar, K., & Isinkaralar, O. (2023). Spatial distribution of heavy metal contamination in road dust samples from an urban environment in Samsun, Türkiye. Bulletin of Environmental Contamination and Toxicology,110(4), 78. https://doi.org/10.1007/s00128-023-03720-w Jain, N., Bhatia, A., Pathak, H., Gupta, N., Sharma, D. K., & Kaushik, R. (2015). Greenhouse gas emission and global warming. Introduction to environmental sciences (pp. 379–411). TERI Press. Jayaratne, R., Thai, P., Christensen, B., Liu, X., Zing, I., Lamont, R., Dunbabin, M., Dawkins, L., Bertrand, L., & Morawska, L. (2021). The effect of cold-start emissions on the diurnal variation of carbon monoxide concentration in a city centre. Atmospheric Environment,245, 118035. https://doi.org/10.1016/j.atmosenv.2020.118035 Jeevalakshmi, D., Narayana Reddy, S., & Manikiam, B. (2017). Land surface temperature retrieval from LANDSAT data using emissivity estimation. International Journal of Applied Engineering Research,12(20), 9679–9687. Kafy, A. A., Shuvo, R. M., Naim, M. N. H., Sikdar, M. S., Chowdhury, R. R., Islam, M. A., Sarker, M. H. S., Khan, M. H. H., & Kona, M. A. (2021). Remote sensing approach to simulate the land use/land cover and seasonal land surface temperature change using machine learning algorithms in a fastest-growing megacity of Bangladesh. Remote Sensing Applications: Society and Environment,21, 100463. https://doi.org/10.1016/j.rsase.2020.100463 Keshtkar, H., & Voigt, W. (2016). A spatiotemporal analysis of landscape change using an integrated Markov chain and cellular automata models. Modeling Earth Systems and Environment,2, 10. https://doi.org/10.1007/s40808-015-0068-4 Kouassi, J. L., Gyau, A., Diby, L., Bene, Y., & Kouamé, C. (2021). Assessing land use and land cover change and farmers’ perceptions of deforestation and land degradation in South-West Côte d’Ivoire, West Africa. Land,10(4), 429. https://doi.org/10.3390/land10040429 Kuang, W., Dou, Y., Zhang, C., Chi, W., Liu, A., Liu, Y., Zhang, R., & Liu, J. (2015). Quantifying the heat flux regulation of metropolitan land use/land cover components by coupling remote sensing modeling with in situ measurement. Journal of Geophysical Research: Atmospheres,120(1), 113–130. https://doi.org/10.1002/2014JD022249 Li, Q., Feng, Y., Tong, X., Zhou, Y., Wu, P., Xie, H., Jin, Y., Chen, P., Liu, S., Xv, X., Liu, S., & Wang, C. (2022). Firefly algorithm-based cellular automata for reproducing urban growth and predicting future scenarios. Sustainable Cities and Society,76, 103444. https://doi.org/10.1016/j.scs.2021.103444 Li, Z., Wang, F., Kang, T., Wang, C., Chen, X., Miao, Z., & Zhang, H. (2022). Exploring differentiated impacts of socio-economic factors and urban forms on city-level CO2 emissions in China: Spatial heterogeneity and varying importance levels. Sustainable Cities and Society,84, 104028. https://doi.org/10.1016/j.scs.2022.104028 Lu, Q., Joyce, J., Imen, S., & Chang, N. B. (2019). Linking socio-economic development, sea level rise, and climate change impacts on urban growth in New York City with a fuzzy cellular automata-based Markov chain model. Environment and Planning B: Urban Analytics and City Science,46(3), 551–572. https://doi.org/10.1177/2399808317720797 Maithani, S. (2009). A neural network based urban growth model of an indian city. Journal of the Indian Society of Remote Sensing,37(3), 363–376. https://doi.org/10.1007/s12524-009-0041-7 Makwinja, R., Kaunda, E., Mengistou, S., & Alamirew, T. (2021). Impact of land use/land cover dynamics on ecosystem service value—A case from Lake Malombe, Southern Malawi. Environmental Monitoring and Assessment,193(8), 1–23. https://doi.org/10.1007/s10661-021-09241-5 Mallick, S. K., Das, P., Maity, B., Rudra, S., Pramanik, M., Pradhan, B., & Sahana, M. (2021). Understanding future urban growth, urban resilience and sustainable development of small cities using prediction-adaptation-resilience (PAR) approach. Sustainable Cities and Society,74, 103196. https://doi.org/10.1016/j.scs.2021.103196 Maskrey, A., Jain, G., & Lavell, A. (2023). The social construction of systemic risk: Towards an actionable framework for risk governance. Disaster Prevention and Management: An International Journal,32(1), 4–26. https://doi.org/10.1108/DPM-07-2022-0155 Mestanza-Ramón, C., Ordoñez-Alcivar, R., Arguello-Guadalupe, C., Carrera-Silva, K., D’Orio, G., & Straface, S. (2022). History, socio-economic problems and environmental impacts of gold mining in the Andean Region of Ecuador. International Journal of Environmental Research and Public Health,19(3), 1190. https://doi.org/10.3390/ijerph19031190 Mia, B., Bhattacharya, R., & Woobaidullah, A. S. M. (2017). Correlation and monitoring of land surface temperature, urban heat island with land use-land cover of Dhaka City using satellite imageries. International Journal of Research in Geography (IJRG),3, 10–20. https://doi.org/10.20431/2454-8685.0304002 Mulligan, M., Rubiano, J. R., Burke, S., & Van Soesbergen, A. (2013). Water security in Amazonia. Report for Global Canopy Programme and International Center for Tropical Agriculture as part of the Amazonia Security Agenda project. Retrieved from, https://doi.org/10.1080/02508060.2022.2133815 Ning, J., Gao, Z., Meng, R., Xu, F., & Gao, M. (2018). Analysis of relationships between land surface temperature and land use changes in the Yellow River Delta. Frontiers of Earth Science,12, 444–456. https://doi.org/10.1007/s11707-017-0657-9 O’Malley, C., Piroozfar, P., Farr, E. R. P., & Pomponi, F. (2015). Urban Heat Island (UHI) mitigating strategies: A case-based comparative analysis. Sustainable Cities and Society,19, 222–235. https://doi.org/10.1016/j.scs.2015.05.009 Olabi, A. G., & Abdelkareem, M. A. (2022). Renewable energy and climate change. Renewable and Sustainable Energy Reviews,158, 112111. https://doi.org/10.1016/j.rser.2022.112111 Omran, E. S. E. (2012). Detection of land-use and surface temperature change at different resolutions. Journal of Geographic Information System,04(3), 189–203. https://doi.org/10.4236/jgis.2012.43024 Orsetti, E., Tollin, N., Lehmann, M., Valderrama, V. A., & Morató, J. (2022). Building resilient cities: Climate change and health interlinkages in the planning of public spaces. International Journal of Environmental Research and Public Health,19(3), 1355. https://doi.org/10.3390/ijerph19031355 Ou, L., Banerjee, S., Xu, H., Coleman, A. M., Cai, H., Lee, U., Wigmosta, M. S., & Hawkins, T. R. (2021). Utilizing high-purity carbon dioxide sources for algae cultivation and biofuel production in the United States: Opportunities and challenges. Journal of Cleaner Production,321, 128779. https://doi.org/10.1016/j.jclepro.2021.128779 Parvin, N. S., & Abudu, D. (2017). Estimating urban heat island intensity using remote sensing techniques in Dhaka city. International Journal of Scientific & Engineering Research,8(4), 289–298. https://doi.org/10.1029/2008/jd009916 Peng, J., Jia, J., Liu, Y., Li, H., & Wu, J. (2018). Seasonal contrast of the dominant factors for spatial distribution of land surface temperature in urban areas. Remote Sensing of Environment,215, 255–267. https://doi.org/10.1016/j.rse.2018.06.010 Peyre, G., Osorio, D., François, R., & Anthelme, F. (2021). Mapping the páramo land-cover in the Northern Andes. International Journal of Remote Sensing,42(20), 7777–7797. https://doi.org/10.1080/01431161.2021.1964709 Pickson, R. B., & Boateng, E. (2022). Climate change: A friend or foe to food security in Africa? Environment Development and Sustainability,24, 4387–4412. https://doi.org/10.1007/s10668-021-01621-8 Pörtner, H. O., Roberts, D. C., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., & Rama, B. (2022). IPPC 2022: Climate change 2022: Impacts, adaptation and vulnerability: working group II contribution to the sith assessment report of the intergovernmental panel on climate change, 3056. https://doi.org/10.1017/9781009325844 Purwanto, P., Astuti, I. S., Rohman, F., Utomo, K. S. B., & Aldianto, Y. E. (2022). Assessment of the dynamics of urban surface temperatures and air pollution related to COVID-19 in a densely populated City environment in East Java. Ecological Informatics,71, 101809. https://doi.org/10.1016/j.ecoinf.2022.101809 Ribeiro, S., Limoges, A., Massé, G., Johansen, K. L., Colgan, W., Weckström, K., ... & et al. (2021). Vulnerability of the North Water ecosystem to climate change. Nature Communications, 12(1), 4475. https://doi.org/10.1038/s41467-021-24742-0 Rimal, B., Zhang, L., Keshtkar, H., Haack, B. N., Rijal, S., & Zhang, P. (2018). Land use/land cover dynamics and modeling of urban land expansion by the integration of cellular automata and markov chain. ISPRS International Journal of Geo-Information,7(4), 154. https://doi.org/10.3390/ijgi7040154 Salem, M., Bose, A., Bashir, B., Basak, D., Roy, S., Chowdhury, I. R., Alsalman, A., & Tsurusaki, N. (2021). Urban expansion simulation based on various driving factors using a logistic regression model: Delhi as a case study. Sustainability,13(19), 10805. https://doi.org/10.3390/su131910805 Sang, L., Zhang, C., Yang, J., Zhu, D., & Yun, W. (2011). Simulation of land use spatial pattern of towns and villages based on CA–Markov model. Mathematical and Computer Modelling,54(3–4), 938–943. https://doi.org/10.1016/j.mcm.2010.11.019 Shafizadeh-Moghadam, H., Minaei, M., Pontius, R. G., Jr., Asghari, A., & Dadashpoor, H. (2021). Integrating a forward feature selection algorithm, random forest, and cellular automata to extrapolate urban growth in the Tehran-Karaj Region of Iran. Computers Environment and Urban Systems,87, 101595. https://doi.org/10.1016/j.compenvurbsys.2021.101595 Shen, Y., Shen, H., Cheng, Q., Huang, L., & Zhang, L. (2020). Monitoring three-decade expansion of China’s major cities based on satellite remote sensing images. Remote Sensing,12(3), 491. https://doi.org/10.3390/rs12030491 Shirani-Bidabadi, N., Nasrabadi, T., Faryadi, S., Larijani, A., & Roodposhti, M. S. (2019). Evaluating the spatial distribution and the intensity of urban heat island using remote sensing, case study of Isfahan city in Iran. Sustainable Cities and Society,45, 686–692. https://doi.org/10.1016/j.scs.2018.12.005 Su, C., & Urban, F. (2021). Circular economy for clean energy transitions: A new opportunity under the COVID-19 pandemic. Applied Energy,289, 116666. https://doi.org/10.1016/j.apenergy.2021.116666 Sulhan, O. F., Sevik, H., & Isinkaralar, K. (2023). Assessment of Cr and Zn deposition on Picea pungens Engelm. In urban air of Ankara, Türkiye. Environment Development and Sustainability,25(5), 4365–4384. https://doi.org/10.1007/s10668-022-02647-2 Talukdar, S., Eibek, K. U., Akhter, S., Ziaul, S. K., Islam, A. R. M. T., & Mallick, J. (2021). Modeling fragmentation probability of land-use and land-cover using the bagging, random forest and random subspace in the Teesta River Basin, Bangladesh. Ecological Indicators,126, 107612. https://doi.org/10.1016/j.ecolind.2021.107612 Tariq, A., & Shu, H. (2020). CA-Markov chain analysis of seasonal land surface temperature and land use land cover change using optical multi-temporal satellite data of Faisalabad, Pakistan. Remote Sensing,12(20), 3402. https://doi.org/10.3390/rs12203402 Tran, D. X., Pla, F., Latorre-Carmona, P., Myint, S. W., Caetano, M., & Kieu, H. V. (2017). Characterizing the relationship between land use land cover change and land surface temperature. ISPRS Journal of Photogrammetry and Remote Sensing,124, 119–132. https://doi.org/10.1016/j.isprsjprs.2017.01.001 Turner, B. L., Lambin, E. F., & Verburg, P. H. (2021). From land-use/land-cover to land system science: This article belongs to Ambio’s 50th Anniversary Collection. Theme: Agricultural land use. Ambio, 50, 1291–1294. https://doi.org/10.1007/s13280-021-01510-4 Ullah, S., Ahmad, K., Sajjad, R. U., Abbasi, A. M., Nazeer, A., & Tahir, A. A. (2019). Analysis and simulation of land cover changes and their impacts on land surface temperature in a lower himalayan region. Journal of Environmental Management,245, 348–357. https://doi.org/10.1016/j.jenvman.2019.05.063 Ullah, N., Siddique, M. A., Ding, M., Grigoryan, S., Khan, I. A., Kang, Z., Tsou, S., Zhang, T., Hu, Y., & Zhang, Y. (2023). The impact of urbanization on Urban heat island: predictive approach using google earth engine and CA-Markov modelling (2005–2050) of Tianjin City, China. International Journal of Environmental Research and Public Health,20(3), 2642. https://doi.org/10.3390/ijerph20032642 Wang, X., Lei, X., Fan, P., Hu, R. Q., & Horng, S. J. (2013). Cost analysis of movement-based location management in PCS networks: An embedded Markov chain approach. IEEE Transactions on Vehicular Technology,63(4), 1886–1902. https://doi.org/10.1109/TVT.2013.2285118 Wang, C., Li, Y., Myint, S. W., Zhao, Q., & Wentz, E. A. (2019). Impacts of spatial clustering of urban land cover on land surface temperature across Koppen climate zones in the contiguous United States. Landscape and Urban Planning,192, 103668. https://doi.org/10.1016/j.landurbplan.2019.103668 Wang, H., Liu, X., Zhao, C., Chang, Y., Liu, Y., & Zang, F. (2021). Spatial-temporal pattern analysis of landscape ecological risk assessment based on land use/land cover change in Baishuijiang National nature reserve in Gansu Province, China. Ecological Indicators,124, 107454. https://doi.org/10.1016/j.ecolind.2021.107454 Xie, Y., Fang, C., Lin, G., Gong, H., & Qiao, B. (2007). Tempo-spatial patterns of land use changes and urban development in globalizing China: A study of Beijing. Sensors for Urban Environmental Monitoring Special Issue,7(11), 2881–2906. https://doi.org/10.3390/S7112881 Yang, X., Zheng, X. Q., & Lv, L. N. (2012). A spatiotemporal model of land use change based on ant colony optimization, Markov chain and cellular automata. Ecological Modelling,233, 11–19. https://doi.org/10.1016/j.ecolmodel.2012.03.011 Yang, J., Menenti, M., Wu, Z., Wong, M. S., Abbas, S., Xu, Y., & Shi, Q. (2021). Assessing the impact of urban geometry on surface urban heat island using complete and nadir temperatures. International Journal of Climatology,41, E3219–E3238. https://doi.org/10.1002/joc.6919 Yao, R., Wang, L., Huang, X., Niu, Z., Liu, F., & Wang, Q. (2017). Temporal trends of surface urban heat islands and associated determinants in major chinese cities. Science of the Total Environment,609, 742–754. https://doi.org/10.1016/j.scitotenv.2017.07.217 Yayla, E. E., Sevik, H., & Isinkaralar, K. (2022). Detection of landscape species as a low-cost biomonitoring study: Cr, Mn, and zn pollution in an urban air quality. Environmental Monitoring and Assessment,194(10), 687. https://doi.org/10.1007/s10661-022-10356-6 Yin, C., Yuan, M., Lu, Y., Huang, Y., & Liu, Y. (2018). Effects of urban form on the urban heat island effect based on spatial regression model. Science of the Total Environment,634, 696–704. https://doi.org/10.1016/j.scitotenv.2018.03.350 Yu, J., Hagen-Zanker, A., Santitissadeekorn, N., & Hughes, S. (2021). Calibration of cellular automata urban growth models from urban genesis onwards-a novel application of Markov chain Monte Carlo approximate bayesian computation. Computers Environment and Urban Systems,90, 1–14. https://doi.org/10.1016/j.compenvurbsys.2021.101689 Zheng, Z., Ma, T., Roberts, P., Li, Z., Yue, Y., Peng, H., & Saito, Y. (2021). Anthropogenic impacts on Late Holocene land-cover change and floristic biodiversity loss in tropical southeastern Asia. Proceedings of the National Academy of Sciences,118(40), e2022210118. https://doi.org/10.1073/pnas.2022210118