Climate change may drive cave spiders to extinction

Ecography - Tập 41 Số 1 - Trang 233-243 - 2018
Stefano Mammola1, Sara L. Goodacre2, Marco Isaia1
1Dept of Life Sciences and Systems Biology Univ. of Torino, Torino, Italy, and IUCN SSC Spider and Scorpion Specialist Group Torino Italy
2School of Biology, Univ. of Nottingham Nottingham UK

Tóm tắt

Subterranean ecosystems present ideal opportunities to study mechanisms underlying responses to changes in climate because species within them are often adapted to a largely constant temperature. We have characterized the thermal conditions of caves in the western Alps, and related these hypogean climate data to the occurrence of Troglohyphantes spiders (Araneae, Linyphiidae). Our data indicated that present distributions reflect Pleistocene glaciation events and also pointed to specific responses as a consequence of changes in temperature. Constant temperatures recorded inside caves provide an approximation of the mean annual temperature outside, thus we extended the results to a regional scale. We used ecological niche modeling to predict habitat suitability both in the Pleistocene and under future global warming scenarios. These analyses pointed toward a future decline in habitat suitability for subterranean spiders and the potential extinction of the most restricted endemic species. When compared with other species that live in confined habitats such as islands and mountains, we expect cave species to be as much, if not more, vulnerable to climate change.

Từ khóa


Tài liệu tham khảo

Catasto speleologico del Piemonte e della Valle DAosta

10.1111/j.1365-2664.2006.01214.x

10.5038/1827-806X.33.1.10

10.3986/ac.v39i3.74

10.1016/j.ecolmodel.2011.02.011

Beaumont L. J., 2008, Why is the choice of future climate scenarios for species distribution modelling important? – Ecol, Lett, 11, 1135

10.1111/j.1461-0248.2011.01736.x

Bellard C., 2014, Impact of sea level rise on the 10 insular biodiversity hotspots, Global Ecol. Biogeogr, 23, 203, 10.1111/geb.12093

Climatic change in mountain regions: a review of possible impacts

10.1016/j.jtherbio.2011.03.002

Botosaneanu L., 1991, Some aspects concerning colonization of the subterranean realm – especially subterranean waters: a response to Rouch and Danielpol, 1987, Stygologia, 6, 11

Brandmayr P., 2013, Hypogean carabid beetles as indicators of global warming? – Environ. Res, Lett, 8, 1

Brignoli P. M, 1971, Note su ragni cavernicoli italiani (Araneae), Fragm. Entomol, 7, 129

10.1186/1471-2148-14-9

10.5038/1827-806X.41.1.9

10.1016/j.biocon.2011.06.020

10.1016/j.biocon.2011.07.024

10.1126/science.1206432

10.1046/j.1461-0248.2003.00439.x

10.1371/journal.pone.0160408

Predicting bat distributions and diversity hotspots in southern Africa

Covington M. D., 2015, Consider a cylindrical cave: a physicist's view of cave and karst science, Acta Carsol, 44, 363

The biology of caves and other subterranean habitats

Culver D. C., 2010, Climate, abiotic factors, and the evolution of subterranean life, Acta Carsol, 39, 539, 10.3986/ac.v39i3.85

10.1126/science.1200303

Revision of the cave‐dwelling and related spiders of the genus

Milieu souterrain et écophysiologique de la reproduction et du développement des Coléoptères Bathysciinae hypogés

10.1111/j.1600-0587.2009.06196.x

Domi nguez‐Villar D., 2015, Is global warming affecting cave temperatures? Experimental and model data from a paradigmatic case study, Clim. Dyn, 45, 569, 10.1007/s00382-014-2226-1

Quaternary glaciations – extent and chronology

10.1111/j.1600-0587.2008.05505.x

10.1111/j.2006.0906-7590.04596.x

Feje r A., 2013, Population size and dispersal patterns for a Drimeotus (Coleoptera, Leiodidae, Leptodirini) cave population, Subterr. Biol, 11, 31, 10.3897/subtbiol.11.4974

10.11646/zootaxa.4170.2.2

10.1017/S0376892997000088

10.1371/journal.pone.0134384

10.1214/aos/1013203451

10.2307/2992183

10.1093/oxfordjournals.molbev.a025766

10.1002/joc.1276

10.1023/A:1021251113462

Holsinger J. R, 1988, Troglobites: the evolution of cave‐dwelling organisms, Am. Sci, 76, 147

10.1111/j.1558-5646.1980.tb04827.x

Huevy R. B., 1989, Evolution of thermal sensitivity of ectotherm performance, Trends Ecol. Evol, 4, 131, 10.1016/0169-5347(89)90211-5

10.1098/rstb.2012.0005

10.1093/biomet/76.2.297

Climate change 2014: synthesis report

10.11646/zootaxa.2690.1.1

Subterranean arachnids of the western Italian Alps (Arachnida: Araneae Opiliones Palpigradi Pseudoscorpiones)

Advances in the systematics of the spider genus

Juberthie C., 1994, Structure et diversite du domaine souterrain; particularite s des habitats et adaptations des espe ces, Encycl. Biospeol, 1, 5

10.1007/s003820000095

10.1111/gcb.13042

10.1016/j.jtherbio.2010.07.004

10.1111/ivb.12113

10.7717/peerj.1384

10.5038/1827-806X.44.3.3

10.1007/s00114-016-1413-9

Data from: Climate change may drive cave spiders to extinction

Generalized linear models 2nd ed

10.1242/jeb.081232

10.1111/j.1600-0587.2013.07872.x

Moore G. W., 1964, Out of phase seasonal temperature fluctuations in Cathedral Cave, Kentucky, Geol. Soc. Am, 76, 313

Motta M, 2014, The definition of the extension of quaternary glaciers within alpine valleys, and his application to study of troglobites, EDIS, 1, 439

Naranjo M., 2014, ¿Do nde buscar troglobiontes? Ensayo de una cartografi a predictiva con MaxEnt en Gran Canaria (islas Canarias), Arxius de Miscella nia Zool, 12, 83, 10.32800/amz.2014.12.0083

10.1177/0309133309355630

10.5038/1827-806X.43.3.3

10.1093/bioinformatics/btg412

10.1146/annurev.ecolsys.37.091305.110100

10.1038/nature01286

Peterson A. T, 2009, Phylogeography is not enough: the need for multiple lines of evidence, Front. Biogeogr, 1, 19

Ecological niches and geographical distributions: a modeling perspective

10.1890/07-2153.1

A brief tutorial on Maxent

10.1016/j.ecolmodel.2005.03.026

10.1126/science.165.3897.971

10.1111/2041-210X.12397

10.1186/s12862-015-0288-2

Cave biology

Rouch R., 1987, L'origine de la faune aquatique souterraine, entre le paradigme du refuge et le mode le de la colonisation active, Stygologia, 3, 345

10.1111/j.1365-2699.2008.02023.x

10.1038/srep23381

10.1016/j.ecolmodel.2012.04.001

10.1007/BF00865553

10.1636/A09-057.1

10.1206/3847.1

10.1371/journal.pone.0055158

10.1175/BAMS-D-11-00094.1

10.1098/rstb.2010.0021

10.1038/416389a

10.1093/biosci/biu090

10.1111/j.1523-1739.2009.01237.x

10.1038/srep35757

Impact of climatic change on alpine ecosystems: inference and prediction

10.1073/pnas.0901643106

Mixed effect models and extensions in ecology with R

10.1111/j.2041-210X.2009.00001.x