Climate change impacts on the streamflow in Spanish basins monitored under near-natural conditions

Journal of Hydrology: Regional Studies - Tập 38 - Trang 100937 - 2021
D. Pulido-Velazquez1, A.J. Collados-Lara1, J. Pérez-Sánchez2,3, Francisco José Segura-Méndez2, J. Senent-Aparicio2
1Instituto Geológico y Minero de España (IGME, CSIC), Urb.Alcázar del Genil, 4. Edificio Zulema, Bajo, 18006 Granada, Spain
2Department of Civil Engineering, Catholic University of San Antonio (UCAM), Campus de los Jerónimos s/n, 30107 Guadalupe, Murcia, Spain
3Department of Civil Engineering, University of Las Palmas de Gran Canaria (ULPGC), Campus de Tafira, 35017 Las Palmas de Gran Canaria, Spain

Tài liệu tham khảo

Abdollahi, 2018, Water balance models in environmental modeling AEMet, 2009 Ajami, 2004, Calibration of a semi-distributed hydrologic model for streamflow estimation along a river system, J. Hydrol. Akaike, H., 1973. Information theory and an extension of the maximum likelihood principle. In: Petrov, B.N., Csáki, F. (Eds.), Proceedings of the 2nd International Symposium on Information Theory, USSR, Tsahkadsor, Armenia, 2–8 September 1971, Akadémiai Kiadó, Budapest, Hungary, pp. 267–281. Akaike, 1974, A new look at the statistical model identification, IEEE Trans. Autom. Control, 19, 716, 10.1109/TAC.1974.1100705 Álvarez, J., Sánchez, A., Quintas, L., 2004. SIMPA, a GRASS based tool for hydrological studies. In: Proceedings of the FOSS/GRASS Users Conference. Arnold, 2012, SWAT: model use, calibration, and validation, Trans. ASABE, 55, 1491, 10.13031/2013.42256 Baena-Ruiz, 2020, Summarizing the impacts of future potential global change scenarios on seawater intrusion at the aquifer scale, Environ. Earth Sci., 79, 99, 10.1007/s12665-020-8847-2 Blenkinsop, 2007, Changes in European drought characteristics projected by the PRUDENCE regional climate models, Int. J. Climatol., 27, 1595, 10.1002/joc.1538 Bourgin, 2015, Transferring global uncertainty estimates from gauged to ungauged catchments, Hydrol. Earth Syst. Sci., 19, 2535, 10.5194/hess-19-2535-2015 Boyle, 2001, Toward improved streamflow forecasts: value of semidistributed modeling, Water Resour. Res., 37, 2749, 10.1029/2000WR000207 Breuer, 2009, Assessing the impact of land use change on hydrology by ensemble modeling (LUCHEM). I: model intercomparison with current land use, Adv. Water Resour. Broderick, 2016, Transferability of hydrological models and ensemble averaging methods between contrasting climatic periods, Water Resour. Res., 52, 8343, 10.1002/2016WR018850 Boughton, 2009, New approach tocalibration of the AWBM for use on ungauged catchments, J. Hydrol. Eng., 14, 562, 10.1061/(ASCE)HE.1943-5584.0000025 Chen, 2014, Assessing regression-based statistical approaches for downscaling precipitation over North America, Hydrol. Process., 28, 3482, 10.1002/hyp.9889 Collados-Lara, 2021, Intra-day variability of temperature and its near-surface gradient with elevation over mountainous terrain: comparing MODIS land surface temperature data with coarse and fine scale near-surface measurements, Int. J. Climatol., 41, 10.1002/joc.6778 Collados-Lara, 2021, Are climate models that allow better approximations of local meteorology better for the assessment of hydrological impacts? A statistical analysis of droughts, Nat. Hazards Earth Syst. Sci. Discuss. Collados-Lara, 2020, Potential impacts of future climate change scenarios on ground subsidence, Water, 10.3390/w12010219 Collados-Lara, 2018, An integrated statistical method to generate potential future climate scenarios to analyse droughts, Water, 10.3390/w10091224 Collados-Lara, 2020, A statistical tool to generate potential future climate scenarios for hydrology applications, Sci. Program Collados-Lara, 2018, Precipitation fields in an alpine Mediterranean catchment: inversion of precipitation gradient with elevation or undercatch of snowfall?, Int. J. Climatol., 38, 3565, 10.1002/joc.5517 Cramer, 2018, Climate change and interconnected risks to sustainable development in the Mediterranean, Nat. Clim. Chang., 8, 972, 10.1038/s41558-018-0299-2 Croke, 2004, A dynamic model for predicting hydrologic response to land cover changes in gauged and ungauged catchments, J. Hydrol., 291, 115, 10.1016/j.jhydrol.2003.12.012 Donnelly, 2017, Impacts of climate change on European hydrology at 1.5, 2 and 3 degrees mean global warming above preindustrial level, Clim. Chang. Estrela, T., Quintas, L., 1996. A distributed hydrological model for water resources assessment in large basins. In: Rivertech ’96 - 1st International Conference on New/Emerging Concepts for Rivers, Proceedings, Vols 1 and 2: Celebrating the Twenty-Fifth Anniversary of Iwra. Escriva-Bou, 2017, The Economic Value ofAdaptive Strategies to Global Change for Water Management in Spain’s JucarBasin, J. Water Resour. Plan. Manag., 143 Fabozzi, 2014 Guo, S., 1995. Impact of climate change on hydrological balance and water resource systems in the Dongjiang Basin, China. In: Modeling and Management of Sustainable Basin-Scale Water Resource Systems (Proceedings of a Boulder Symposium), vol. 231, LAHS Publication, Los Alamos, NM, USA. Gupta, 1999, Status of automatic calibration for hydrologic models: comparison with multilevel expert calibration, J. Hydrol. Eng., 4, 135, 10.1061/(ASCE)1084-0699(1999)4:2(135) Hargreaves, 1985, Reference crop evapotranspiration from temperature, Appl. Eng. Agric. Haque, 2015, Estimation of catchment yield and associated uncertainties due to climate change in a mountainous catchment in Australia, Hydrol. Process., 29, 4339, 10.1002/hyp.10492 Hayes, 2011, The lincoln declaration on drought indices: universal meteorological drought index recommended, Bull. Am. Meteorol. Soc., 92, 485, 10.1175/2010BAMS3103.1 IPCC, 2014. Climate change 2014: synthesis report. In: Pachauri, R.K., Meyer, L.A. (Eds.), Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, IPCC, Geneva, Switzerland, 2014, p. 151. Ivezic, 2017, A review of procedures for water balance modelling, J. Environ. Hydrol., 25 Jiang, 2007, Comparison of hydrological impacts of climate change simulated by six hydrological models in the Dongjiang Basin, South China, J. Hydrol., 336, 316, 10.1016/j.jhydrol.2007.01.010 Karpouzos, 2011, A hydrological investigation using a lumped water balance model: the Aison River Basin case (Greece), Water Environ. J., 25, 297, 10.1111/j.1747-6593.2010.00222.x Köppen, 1936 Köppen, W., 1918. Klassifikation der Klimate nach Temperatur, Niederschlag und Jahresablauf. Petermanns Geogr. Mitt. Gotha, Germany, 1918, pp. 193–203, 243–248. Köppen, W., 1884. Die Wärmezonen der Erde, nach der Dauer der heissen, gemässigten und kalten Zeit und nach der Wirkung der Wärme auf die organische Welt betrachtet. Meteorol. Zeitschrift. Koren, 2004, Hydrology laboratory research modeling system (HL-RMS) of the US national weather service, J. Hydrol., 291, 297, 10.1016/j.jhydrol.2003.12.039 Kumar, 2015, Identification of the best multi-model combination for simulating river discharge, J. Hydrol., 525, 313, 10.1016/j.jhydrol.2015.03.060 Llopis-Albert, 2015, Using MODFLOW code to approach transient hydraulic head with a sharp-interface solution, Hydrol. Process., 29, 2052, 10.1002/hyp.10354 Lobligeois, 2014, When does higher spatial resolution rainfall information improve streamflow simulation? An evaluation using 3620 flood events, Hydrol. Earth Syst. Sci., 18, 575, 10.5194/hess-18-575-2014 Martínez-Santos, 2010, Lumped and distributed approaches to model natural recharge in semiarid karst aquifers, J. Hydrol., 388, 389, 10.1016/j.jhydrol.2010.05.018 Matott, 2009, Evaluating uncertainty in integrated environmental models: a review of concepts and tools, Water Resour. Res., 45, 10.1029/2008WR007301 Matte, 2019, Robustness and scalability of regional climate projections over Europe, Front. Environ. Sci., 6, 10.3389/fenvs.2018.00163 Makhlouf, 1994, A two-parametermonthly water balance model for French watersheds, J. Hydrol., 162, 299, 10.1016/0022-1694(94)90233-X Misra, 2014, Climate change and challenges of water and food security, Int. J. Sustain. Built Environ., 3, 153, 10.1016/j.ijsbe.2014.04.006 Molina-Navarro, 2016, Hydrological modeling and climate change impacts in an agricultural semiarid region. Case study: Guadalupe River basin, Mexico, Agric. Water Manag., 175, 29, 10.1016/j.agwat.2015.10.029 Morán-Tejeda, 2014, Streamflow timing of mountain rivers in Spain: recent changes and future projections, J. Hydrol., 517, 1114, 10.1016/j.jhydrol.2014.06.053 Moriasi, 2007, Model evaluation guidelines for systematic quantification of accuracy in watershed simulations, Trans. ASABE Nash, 1970, River flow forecasting through conceptuial models, part 1 - a discussion of principles, J. Hydrol., 10, 282, 10.1016/0022-1694(70)90255-6 Pardo-Igúzquiza, 2019, Potential future impact of climate change on recharge in the Sierra de las Nieves (southern Spain) high-relief karst aquifer using regional climate models and statistical corrections, Environ. Earth Sci., 78, 598, 10.1007/s12665-019-8594-4 Pearson, 1895, Note on regression and inheritance in the case of two parents, Proc. R. Soc. Lond. Paudel, 2011, Comparing the capability of distributed and lumped hydrologic models for analyzing the effects of land use change, J. Hydroinform., 13, 461, 10.2166/hydro.2010.100 Pedro-Monzonís, 2015, Key issues for determining the exploitable water resources in a Mediterranean river basin, Sci. Total Environ., 503–504, 319, 10.1016/j.scitotenv.2014.07.042 Pellicer-Martinez, 2015, Contrast and transferability of parameters of lumped water balance models in the Segura River Basin (Spain), Water Environ. J., 29, 43, 10.1111/wej.12091 Pérez-Sánchez, 2020, Assessment of ecological and hydro-geomorphological alterations under climate change using SWAT and IAHRIS in the Eo River in Northern Spain, Water, 10.3390/w12061745 Pérez-Sánchez, 2019, Evaluating hydrological models for deriving water resources in peninsular Spain, Sustainability, 11, 2872, 10.3390/su11102872 Pulido-Velazquez, 2008, Reducing the computational cost of unconfined groundwater flow in conjunctive-use models at basin scale assuming linear behaviour: the case of Adra-Campo de Dalías, J. Hydrol., 353, 159, 10.1016/j.jhydrol.2008.02.006 Pulido-Velazquez, 2018, Assessing impacts of future potential climate change scenarios on aquifer recharge in continental Spain, J. Hydrol., 567, 803, 10.1016/j.jhydrol.2017.10.077 Pulido-Velazquez, 2015, Assessment of future groundwater recharge in semi-arid regions under climate change scenarios (Serral-Salinas aquifer, SE Spain). Could increased rainfall variability increase the recharge rate?, Hydrol. Process., 29, 828, 10.1002/hyp.10191 Pulido-Velazquez, 2018, Integrated assessment of future potential global change scenarios and their hydrological impacts in coastal aquifers - a new tool to analyse management alternatives in the Plana Oropesa-Torreblanca aquifer, Hydrol. Earth Syst. Sci., 22, 3053, 10.5194/hess-22-3053-2018 Pulido-Velazquez, 2006, A two-step explicit solution of the Boussinesq equation for efficient simulation of unconfined aquifers in conjunctive-use models, Water Resour. Res., 42, 10.1029/2005WR004473 Pulido-Velazquez, 2007, A general methodology to simulate groundwater flow of unconfined aquifers with a reduced computational cost, J. Hydrol., 338, 42, 10.1016/j.jhydrol.2007.02.009 Pulido-Velazquez, 2007, An efficient conceptual model to simulate surface water body-aquifer interaction in conjunctive use management models, Water Resour. Res., 43, 10.1029/2006WR005064 Pulido-Velazquez, 2012, A conceptual–numericalmodel to simulate hydraulic head in aquifers that are hydraulically connectedto surface water bodies, Hydrological Processes, 26, 1435, 10.1002/hyp.8214 Pulido-Velazquez, 2011, Efficient conceptualmodel for simulating the effect of aquifer heterogeneity on natural groundwaterdischarge to rivers, Advances in WaterResources, 32, 1377 Rasilla, 2013, Climate change projections of streamflow in the Iberian peninsula, Int. J. Water Resour. Dev., 29, 184, 10.1080/07900627.2012.721716 Räty, 2014, Evaluation of delta change and bias correction methods for future daily precipitation: intermodel cross-validation using ENSEMBLES simulations, Clim. Dyn., 42, 2287, 10.1007/s00382-014-2130-8 Reed, 2004, Overall distributed model intercomparison project results, J. Hydrol., 298, 27, 10.1016/j.jhydrol.2004.03.031 Refsgaard, 1996, Operational validation and intercomparison of different types of hydrological models, Water Resour. Res., 32, 2189, 10.1029/96WR00896 Rupérez-Moreno, 2017, Cost-benefit analysis of the managed aquifer recharge system for irrigation under climate change conditions in Southern Spain, Water, 10.3390/w9050343 Samani, 2000, Estimating solar radiation and evapotranspiration using minimum climatological data, J. Irrig. Drain. Eng., 126, 265, 10.1061/(ASCE)0733-9437(2000)126:4(265) Senent-Aparicio, 2019, Coupling machine-learning techniques with SWAT model for instantaneous peak flow prediction, Biosyst. Eng., 177, 67, 10.1016/j.biosystemseng.2018.04.022 Senent-Aparicio, 2018, Assessing impacts of climate variability and reforestation activities on water resources in the headwaters of the Segura River Basin (SE Spain), Sustainability, 10, 3277, 10.3390/su10093277 Senent-Aparicio, 2018, Using multiple monthly water balance models to evaluate gridded precipitation products over Peninsular Spain, Remote Sens., 10, 922, 10.3390/rs10060922 Senent-Aparicio, 2017, Using SWAT and fuzzy TOPSIS to assess the impact of climate change in the headwaters of the Segura River Basin (SE Spain), Water, 10.3390/w9020149 Senent-Aparicio, 2018, Couplingmachine-learning techniques with SWAT model for instantaneous peak flowprediction, Biosystems Engineering Shah, 1996, Modelling the effects of spatial variability in rainfall on catchment response. 2. Experiments with distributed and lumped models, J. Hydrol. Smith, 2012, Results of the DMIP 2 Oklahoma experiments, J. Hydrol., 418–419, 17, 10.1016/j.jhydrol.2011.08.056 Tigabu, 2020, Climate change impacts on the water and groundwater resources of the Lake Tana Basin, Ethiopia, J. Water Clim. Chang. Tramblay, 2020, Challenges for drought assessment in the Mediterranean region under future climate scenarios, Earth Sci. Rev., 210, 10.1016/j.earscirev.2020.103348 Thomas, H. Improved Methods for National WaterAssessment; Report WR15249270; USWater Resource Council: Washington, DC, USA,1981. 1997 Van Esse, 2013, The influence of conceptual model structure on model performance: a comparative study for 237 French catchments, Hydrol. Earth Syst. Sci., 17, 4227, 10.5194/hess-17-4227-2013 Vansteenkiste, 2014, Intercomparison of hydrological model structures and calibration approaches in climate scenario impact projections, J. Hydrol., 519, 743, 10.1016/j.jhydrol.2014.07.062 Velázquez, 2010, Performance and reliability of multimodel hydrological ensemble simulations based on seventeen lumped models and a thousand catchments, Hydrol. Earth Syst. Sci., 14, 2303, 10.5194/hess-14-2303-2010 Viney, N.R., Croke, B.F.W., Breuer, L., Bormann, H., Bronstert, A., Frede, H., Gräff, T., Hubrechts, L., Huisman, J.A., Jakeman, A.J., Kite, G.W., Lanini, J., Leavesley, G., Lettenmaier, D.P., Lindström, G., Seibert, J., Sivapalan, M., Willems, P., 2005. Ensemble modelling of the hydrological impacts of land use change. In: MODSIM05 - International Congress on Modelling and Simulation: Advances and Applications for Management and Decision Making, Proceedings. Vörösmarty, 2000, Global water resources: vulnerability from climate change and population growth, Science, 289, 284, 10.1126/science.289.5477.284 Wriedt, 2009 Xiong, 1999, A two-parametermonthly water balance model and its application, J. Hydrol., 216, 111, 10.1016/S0022-1694(98)00297-2 Yu, 2015, A comparative assessment of AWBM and SimHyd for forested watersheds, Hydrol. Sci. J., 60, 1200, 10.1080/02626667.2014.961924 Zhang, 2004, Use of next generation weather radar data and basin disaggregation to improve continuous hydrograph simulations, J. Hydrol. Eng., 9, 103, 10.1061/(ASCE)1084-0699(2004)9:2(103)