Biến đổi khí hậu và các phương thức giảm phát thải cho ngành thép dựa trên than quy mô lớn: Vấn đề triển khai

Springer Science and Business Media LLC - Tập 75 - Trang 2453-2464 - 2022
Prodip Kumar Sen1, Gour Gopal Roy1
1Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India

Tóm tắt

Theo chính sách biến đổi khí hậu quốc tế và việc sử dụng chủ yếu lò luyện kim dựa trên than (BF–BOF) trong ngành thép, với lượng phát thải trung bình 2,0 t CO2/t thép, việc xem xét các lộ trình xử lý thay thế là cần thiết để giảm cường độ phát thải. Một cách tiếp cận hợp nhất tiến bộ với các quá trình năng lượng tái tạo và khí thay thế được chỉ ra cho một ngành dựa trên than. Cách tiếp cận này cũng duy trì việc sử dụng than cho sản xuất chính với các thay đổi công nghệ như công nghệ giảm thiểu nóng chảy, HISARNA với công nghệ thu giữ và lưu trữ carbon, hoặc lò luyện kim có tái chế khí thải. Việc phối hợp các quá trình 'hydro điện phân xanh' dựa trên năng lượng tái tạo với/không có khí tự nhiên với các phương thức xử lý dựa trên than hiện có là một lựa chọn quan trọng trong việc đạt được các mục tiêu biến đổi khí hậu toàn cầu về giảm phát thải. Các hạn chế về công suất của các lộ trình xử lý thay thế và chi phí hydrogen xanh cao là những trở ngại cần vượt qua trong việc hợp nhất tiến bộ. Một cách tiếp cận nhằm thiết kế lại các mạch hỗn hợp để giảm thiểu phát thải theo ngành, liên quan đến BF–BOF với phế liệu có sẵn, được trình bày.

Từ khóa

#biến đổi khí hậu #giảm phát thải #ngành thép #xử lý thay thế #năng lượng tái tạo #công nghệ thu giữ carbon

Tài liệu tham khảo

IEA, Energy Technology Perspectives 2014, IEA, Paris. https://doi.org/10.1787/energy_tech-2014-en (2014). IEA, Energy Technology Perspectives 2017, IEA, Paris. https://www.iea.org/reports/energy-technology-perspectives-2017 (2017). European Commission, Climate Strategies and Targets. https://ec.europa.eu/clima/policies/strategies_en. Croezen H, and Korteland M, A Long-Term View of CO2 Efficient Manufacturing in the European Region, Report Delft, CE Delft (2010). IEA, CO2 Emissions from Fuel Combustion: Overview. https://stats2.digitalresources.jisc.ac.uk/metadata/IEA/co2/CO2%20Emissions_documentation_2020.pdf (2020). IEA, Energy Technology Perspectives 2020, OECD Publishing, Paris. https://doi.org/10.1787/d07136f0-en (2020). IEA, Key World Energy Statistics 2020, IEA, Paris. https://www.iea.org/reports/key-world-energy-statistics-2020 (2020). Holappa L, Metals 10 (2020) 1117. https://doi.org/10.3390/met10091117. UNEP Emissions Gap Report, Chapter 3. https://reliefweb.int/sites/reliefweb.int/files/resources/EGR2018_FullReport_EN.pdf (2018). Pei M, Petäjäniemi M, Regnell A, and Wijk O, Metals 10 (2020) 1. https://doi.org/10.3390/met10070972. UNFCC, United Nations Framework Convention on Climate Change. https://en.wikipedia.org/wiki/United_Nations_Framework_Convention_on_Climate_Change. Naito M, Takeda K, and Matsui Y, ISIJ Int 55 (2015) 7. Peacy J G, and Davenport W G, The Iron Blast Furnace: Theory and Practice, Pergamon Press, Oxford (1979), p. 251. Biswas A K, Principles of Blast Furnace Ironmaking, SBA Publication, Kolkata (1984), p. 528. Sahu R K, Roy S K, and Sen P K, Steel Res Int 86 (2015) 502. Roy, G G, EEPC, September 2020, The Magic of Iron Making. https://www.eepcindia.org/eepc-magazine/magazine.aspx?id=MAZ0210202016442159532&magazine=September-2020. Meijer K, Denys M, Lasar J, Birat J-P, Still, G, and Overmaat, B, Ironmak Steelmak 36 (2009) 249. https://doi.org/10.1179/174328109X439298. Technologies Customized List, 2017. https://www.jisf.or.jp/en/activity/climate/Technologies/documents/TechnologiesCustomizedListIndiav3.pdf. Mahanta B K, Sarkar S, Sen, P K, and Chakraborti N, Can Metall Q (2021). https://doi.org/10.1080/00084433.2021.2016344. Nogami H, Kashiwaya Y, and Yamada D, ISIJ Int 58 (2012) 1523. Yilmaz C, Wendelstorf J, and Turek T, J Clean Prod 154 (2017) 488. 1016/j.jclepro.2017.03.162. Mousa E, Wang C, Riesbeck J, and Larsson M, Renew Sustain Energy Rev 65 (2016) 1247. Norgate T, Haque N, Somerville M, and Jahanshahi S, ISIJ Int 52 (2012) 1472. Suopajärvi H, Umeki K, Mousa E, Hedayati A, Romar H, Kemppainen A, Wang C, Phounglamcheik A, Tuomikoski S, Norberg N, and Andefors A, Appl Energy 213 (2018) 384. Norgate T, and Langberg D, ISIJ Int 49 (2009) 587. Feliciano-Bruzual C, and Mathews J A, Rev Metal 49 (2013) 458. https://doi.org/10.3989/revmetalm.1331. Chatterjee A, Sponge Iron Production by Direct Reduction of Iron Oxide, PHI, New Delhi (2012). Kekkonen M, and Holappa L E, Comparison of different coal based direct reduction processes, Report, Helsinki University of Technology, TKK-MK-99 (2000). Fastmet Process. https://www.kobelco.co.jp/english/products/ironunit/fastmet/. Accessed January 2021. Kumar B, Mishra S, Roy G G, and Sen P K, Steel Res Int 88 (2017) 1. https://doi.org/10.1002/srin.201600265. Mishra S, and Roy G G, Metall Mater Trans B 47B (2016) 2347. Kumar, B, Roy, G G, and Sen, P K, Energy Clim Change 1 (2020) 100016. https//doi.org/https://doi.org/10.1016/j-eqycc.2020.100016. Kumar B, Roy G G, and Sen P K, Int J Exergy 36 (2021) 280. https://doi.org/10.1504/IJEX.2021.118721. Cheeley R, and Marcus L, Coal Gasification Solution for Indian Ironmaking, Midrex Technologies, Inc. http://www.midrex.com/wp-content/uploads/Midrex_Paper_Jan_2010_Kolkata_Conference.pdf (2010). Personal discussions and estimations with industry experts Shri A.C.R. Das. Energiron DRI Technology by Tenova and Danieli. https://www.tenova.com/fileadmin/user_upload/tenova_products/steel_making_direct_and_pre_reduction_technologies/energiron_book_2014.pdf. Mukhopadhyay A, and Ometto M, Energy Saving and CO2 reduction in Energiron DRI Production, 6th International Congress on the Science and Technology of Ironmaking – ICSTI, 42nd International Meeting on Ironmaking and 13th International Symposium on Iron Ore, October 14th to 18th, 2012, Rio de Janeiro, RJ, Brazil. Sarkaria D, Case Study: Al Reyadah CCUS Project, Abu Dhabi Carbon Capture Company, Panel 2: Carbon Capture Process: Lessons Learned in Project Start-Up, United Arab Emirates 2nd May 2017. https://www.cslforum.org/cslf/sites/default/files/documents/AbuDhabi2017/AbuDhabi17-TW-Sakaria-Session2.pdf (2017). DIRECT FROM MIDREX, “Ultra low CO2 steel making, transitioning to the hydrogen economy”, First Quarter 2020, Published in 2020 by Midrex Technologies. https://www.midrex.com/wp-content/uploads/Midrex-2020-DFM1QTR-Final.pdf (2020). Arcelor Mittal, Climate Action Report 2, 2021. https://constructalia.arcelormittal.com/files/Climate_Action_Report_2_July_2021--94aa5d83ef86cd03ec059ef8d1728966.pdf. Chatterjee A, Hot Metal Production by Smelting Reduction of Iron Oxide, PHI, ND (2010). Technology Factsheet, Hisarna with CCUS. https://www.tatasteeleurope.com/static_files/Downloads/Corporate/About%20us/hisarna%20factsheet.pdf. Meijer K, Zeilstra C, Teerhuis C, Ouwehand M, and van der Stel J, Trans Ind Inst Metals 66 (2013) 475. Tata Steel and TNO, 2018, HIsarna: Demonstrating Low CO2 Ironmaking at Pilot Scale. https://www.co2-cato.org/cato-download/5540/20181211_122258_14_2018.12.04_CATO-meets-the-projects_vanderStel. Danieli and Tenova, 2012, The New Generation of Direct Reduction Technology and Steelmaking Integration. https://www.energiron.com/wp-content/uploads/2019/05/ENERGIRON-DR-Technology-Overview.pdf. Sarkar S, Bhattacharya R, Roy G G, and Sen P K, Steel Res Int 87 (2017) 1. https://doi.org/10.1002/srin.201700248. Birat J P, Steel sectoral report, Contribution to the UNIDO roadmap on CCS - fifth draft. https://www.globalccsinstitute.com/archive/hub/publications/15671/global-technology-roadmap-ccs-industry-steel-sectoral-report.pdf (2010). IEA Environmental Projects Ltd. (IEAGHG) Iron and Steel CCS Study, 2013, Techno economics Integrated Steel Mill, Report 2013/04, July 2013. https://ieaghg.org/publications/technical-reports/reports-list/9-technical-reports/1001-2013-04-iron-and-steel-ccs-study-techno-economics-integrated-steel-mill. Farla J C M, Hendriks C A, and Blok K, Clim Change 29 (1995) 439. https://doi.org/https://doi.org/10.1007/BF01092428. Gielen D, Energy Convers Manag 44 (2003) 1027. Ho M, Bustamantea A, and Wiley D E, Int J Greenh Gas Control 19 (2013) 145. Tsupari E, Kärkia J, Arastoa A, and Pisilä E, Int J Greenh Gas Control 16 (2013) 278. Arasto A, Tsuparia E, Kärkia J, Erkki P, and Sorsamäkia L, Int J Greenh Gas Control 16 (2013) 271. Arasto A, Tsuparia E, Kärkia J, Sihvonenb M, and Liljabet J, Energy Procedia 37 (2013) 7117. Maiti A, Bhattacharya S, Bose S, Chatterjee S, and Mukherjee A, Evaluation of Techno-Economic Viability of Carbon Capture Utilization and Storage (CCU&S) With Carbon Credits for Steel Plants, AISTech 2019, Proceedings of the Iron & Steel Technology Conference 6–9 May 2019, Pittsburgh, PA, USA. 10.1000.377.010. Arcelor Mittal Report. http://www.steelanol.eu/en. Accessed June 2021. Wich T, Lueke W, Deerberg G, and Oles M, Front Energy Res 7 (2020) 1. https://doi.org/https://doi.org/10.3389/fenrg.2019.00162. Gough C, and Upham P, Biomass energy with carbon capture and storage (BECCS): a review. Working Paper 147, Tyndall Centre for Climate Change Research. http://www.tyndall.ac.uk/publications/working_papers/working_papers.shtml (2010). Rootzén J, Kjärstad J, Johnsson F, and Karlsson H, International Conference on Negative CO2 Emissions, May 22–24, 2018, Göteborg, Sweden. https://www.researchgate.net/publication/329143960_Deployment_of_BECCS_in_basic_industry-a_Swedish_case_study (2018). IEA, Net Zero by 2050, IEA, Paris. https://www.iea.org/reports/net-zero-by-2050 (2021). Gielen D, Saygin D, Taibi E, and Birat J-P, J Ind Ecol 24 (2020) 1113. Proost J, Int J Hydrog Energy 45 (2020) 17067. Zapantis A, Report on “Blue Hydrogen” Global CCS Institute. https://www.globalccsinstitute.com/wp-content/uploads/2021/04/Circular-Carbon-Economy-series-Blue-Hydrogen.pdf (2021). World Steel Association, World Steel in Figures. https://www.worldsteel.org/en/dam/jcr:976723ed-74b3-47b4-92f6-81b6a452b86e/World%2520Steel%2520in%2520Figures%25202021.pdf (2021). World Steel Association, Factsheets, Scrap Use in Steel Industry. https://www.worldsteel.org/publications/fact-sheets.html (2021). World Steel Association, Raw Materials, In Factsheet: Steel and Raw Materials. https://www.worldsteel.org/steel-by-topic/raw-materials.html. Accessed June 2021 (2021). Sahoo M, Sarkar S, Das A C R, Roy G G, and Sen P K, Steel Res Int 90 (2019) 1. Amato A, Brimacombe L, and Howard N, Ironmak Steelmak 23 (1996) 236. Toktarova A, Karlsson I, Rootzén J, Göransson L, Odenberger M, and Johnsson F, Energies 13 (2020) 3840. https://doi.org/10.3390/en13153840.