Click amidations, esterifications and one–pot reactions catalyzed by Cu salts and multimetal–organic frameworks (M–MOFs)

Molecular Catalysis - Tập 522 - Trang 112228 - 2022
Rossella Greco1, Estefanía Tiburcio2, Brenda Palomar-De Lucas1, Jesús Ferrando-Soria2, Donatella Armentano3, Emilio Pardo2, Antonio Leyva-Pérez1
1Instituto de Tecnología Química (UPV–CSIC), Universidad Politècnica de València–Consejo Superior de Investigaciones Científicas, Avda. de los Naranjos s/n, Valencia 46022, Spain
2Departamento de Química Inorgánica, Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, Catedrático José Beltrán Martínez, 2, Paterna, Valencia 46980, Spain
3Dipartimento di Chimica e Tecnologie Chimiche (CTC), Università della Calabria, Rende, Cosenza, 87036, Italy

Tài liệu tham khảo

Jewett, 2010, Cu-free click cycloaddition reactions in chemical biology, Chem. Soc. Rev., 39, 1272, 10.1039/b901970g Xu, 2020, Click chemistry: evolving on the fringe, Chin. J. Chem., 38, 414, 10.1002/cjoc.201900421 Kolb, 2001, Click chemistry: diverse chemical function from a few good reactions, Angew. Chem. Int. Ed. Engl., 40, 2004, 10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5 Sletten, 2009, Bioorthogonal chemistry: Fishing for selectivity in a sea of functionality, Angew. Chem. Int. Ed. Engl., 48, 6974, 10.1002/anie.200900942 Row, 2018, Constructing new bioorthogonal reagents and reactions, Acc. Chem. Res., 51, 1073, 10.1021/acs.accounts.7b00606 Gutiérrez-González, 2021, Bioorthogonal azide–thioalkyne cycloaddition catalyzed by photoactivatable ruthenium(II) complexes, Angew. Chem. Int. Ed., 60, 16059, 10.1002/anie.202103645 Musumeci, 2015, Click chemistry, a potent tool in medicinal sciences, Curr. Med. Chem., 22, 2022, 10.2174/0929867322666150421110819 Agnew, 2019, Protein–catalyzed capture agents, Chem. Rev., 119, 9950, 10.1021/acs.chemrev.8b00660 Himo, 2005, Copper(I)–catalyzed synthesis of azoles. DFT study predicts unprecedented reactivity and intermediates, J. Am. Chem. Soc., 127, 210, 10.1021/ja0471525 Worrell, 2013, Direct evidence of a dinuclear copper intermediate in Cu(I)–catalyzed azide–alkyne cycloadditions, Science, 340, 457, 10.1126/science.1229506 Grasa, 2003, Efficient transesterification/acylation reactions mediated by N–heterocyclic carbene catalysts, J. Org. Chem., 68, 2812, 10.1021/jo0267551 Arthuis, 2010, Pd0–catalyzed carbonylation of 1,1–dichloro–1–alkenes, a new selective access to Z–α–chloroacrylates, Chem. Commun., 46, 7810, 10.1039/c0cc02517h Weng, 2011, Transesterification catalyzed by iron(III) β–diketonate species, Tetrahedron, 67, 1640, 10.1016/j.tet.2011.01.009 Lloret, 2019, Few layer 2D pnictogens catalyze the alkylation of soft nucleophiles with esters, Nat. Commun., 10, 509, 10.1038/s41467-018-08063-3 Nakatake, 2016, Chemoselective transesterification of acrylate derivatives for functionalized monomer synthesis using a hard zinc alkoxide generation strategy, Eur. J. Org. Chem., 2016, 3696, 10.1002/ejoc.201600737 Narasimhan, 2004, Esters, amides and substituted derivatives of cinnamic acid: synthesis, antimicrobial activity and QSAR investigations, Eur. J. Med. Chem., 39, 827, 10.1016/j.ejmech.2004.06.013 de Vries, 2003, Homeopathic ligand–free palladium as a catalyst in the Heck reaction. A comparison with a palladacycle, Org. Lett., 5, 3285, 10.1021/ol035184b Leyva-Pérez, 2013, Water–stabilized three– and four–atom palladium clusters as highly active catalytic species in ligand–free C–C cross–coupling reactions, Angew. Chem. Int. Ed. Engl., 52, 11554, 10.1002/anie.201303188 Fernández, 2019, Base-controlled Heck, Suzuki, and Sonogashira reactions catalyzed by ligand-free platinum or palladium single atom and sub-nanometer clusters, J. Am. Chem. Soc., 141, 1928, 10.1021/jacs.8b07884 Francais, 2010, Total synthesis of the anti–apoptotic agents iso– and bongkrekic acids, Org. Lett., 12, 340, 10.1021/ol902676t Breslow, 1963, Synthesis of cyclopropenones by a modified Favorskii reaction, J. Am. Chem. Soc., 85, 234, 10.1021/ja00885a029 Komatsu, 2003, Cyclopropenylium cations, cyclopropenones, and heteroanalogues–recent advances, Chem. Rev., 103, 1371, 10.1021/cr010011q Nakamura, 2003, Cyclopropenone acetals: synthesis and reactions, Chem. Rev., 103, 1295, 10.1021/cr0100244 Wang, 2011, Chloride ion–catalyzed generation of difluorocarbene for efficient preparation of gem–difluorinated cyclopropenes and cyclopropanes, Chem. Commun., 47, 2411, 10.1039/C0CC04548A Rullière, 2016, Difluorocarbene addition to alkenes and alkynes in continuous flow, Org. Lett., 18, 1988, 10.1021/acs.orglett.6b00573 Row, 2017, Cyclopropenones for metabolic targeting and sequential bioorthogonal labeling, J. Am. Chem. Soc., 139, 7370, 10.1021/jacs.7b03010 Curnow, 2006, Synthesis of diisopropylcyclopropenone and X–ray structure of its dichlorodimethyltin(IV) adduct, Arkivoc, iii, 43 Ciabattoni, 1965, Cycloaddition reaction of enamines with diphenylcyclopropenone, J. Am. Chem. Soc., 87, 1404, 10.1021/ja01084a060 Cunha, 1996, A semiempirical quantum mechanical approach towards understanding of cyclopropenone reactivity, J. Mol. Struc. THEOCHEM, 364, 45, 10.1016/0166-1280(95)04453-1 Li, 2017, Organocatalyzed [3 + 2] annulation of cyclopropenones and β–ketoesters: an approach to substituted butenolides with a quaternary center, Org. Lett., 19, 778, 10.1021/acs.orglett.6b03737 Greenberg, 1983, The strain energy of diphenylcyclopropenone: a reexamination, J. Am. Chem. Soc., 105, 6855, 10.1021/ja00361a018 Kascheres, 1975, Reaction of diphenylcyclopropenone with 2–aminopyridines. Synthetic and mechanistic implications, J. Org. Chem., 40, 1440, 10.1021/jo00898a013 Eicher, 1987, Synthese und reaktionen von 2,3–diaryl– und 2,3–dialkylcyclopropenoniminen, Synthesis, 1987, 887, 10.1055/s-1987-28111 Nanda, 2020, A palladium–catalyzed cascade c–c activation of cyclopropenone and carbonylative amination: easy access to highly functionalized maleimide derivatives, Org. Lett., 22, 1368, 10.1021/acs.orglett.9b04656 Kascheres, 1980, Reaction of diphenylcyclopropenone with primary and secondary enaminones. Synthetic and mechanistic implications, J. Org. Chem., 45, 5340, 10.1021/jo01314a026 Heiss, 2019, Cyclopropeniminium ions exhibit unique reactivity profiles with bioorthogonal phosphines, J. Org. Chem., 84, 7443, 10.1021/acs.joc.9b00518 Eicher, 1981, Zur reaktion von diphenylcyclopropenon, seinen funktionellen derivaten und imoniumsalzen mit aminen, Liebigs Ann., 1981, 765, 10.1002/jlac.198119810503 Friscourt, 2012, A fluorogenic probe for the catalyst–free detection of azide–tagged molecules, J. Am. Chem. Soc., 134, 18809, 10.1021/ja309000s Favre, 2018, Sydnone reporters for highly fluorogenic copper–free click ligations, J. Org. Chem., 83, 2058, 10.1021/acs.joc.7b03004 Yaghi, 1995, Selective binding and removal of guests in a microporous metal–organic framework, Nature, 378, 703, 10.1038/378703a0 Furukawa, 2013, The chemistry and applications of metal–organic frameworks, Science, 341, 10.1126/science.1230444 Maurin, 2017, The new age of MOFs and of their porous–related solids, Chem. Soc. Rev., 46, 3104, 10.1039/C7CS90049J Kirchon, 2018, From fundamentals to applications: a toolbox for robust and multifunctional MOF materials, Chem. Soc. Rev., 47, 8611, 10.1039/C8CS00688A Kitagawa, 2007, Chemistry of coordination space of porous coordination polymers, Coord. Chem. Rev., 251, 2490, 10.1016/j.ccr.2007.07.009 Viciano-Chumillas, 2020, Metal–organic frameworks as chemical nanoreactors: synthesis and stabilization of catalytically active metal species in confined spaces, Acc. Chem. Res., 53, 520, 10.1021/acs.accounts.9b00609 Young, 2020, Isolating reactive metal–based species in metal–organic frameworks – viable strategies and opportunities, Chem. Sci., 11, 4031, 10.1039/D0SC00485E Yang, 2019, Catalysis by metal organic frameworks: perspective and suggestions for future research, ACS Catal., 9, 1779, 10.1021/acscatal.8b04515 Dhakshinamoorthy, 2018, Catalysis and photocatalysis by metal organic frameworks, Chem. Soc. Rev., 47, 8134, 10.1039/C8CS00256H Gascon, 2014, Metal organic framework catalysis: quo vadis?, ACS Catal., 4, 361, 10.1021/cs400959k Castillo-Blas, 2018, Metal–organic frameworks incorporating multiple metal elements, Isr. J. Chem., 58, 1036, 10.1002/ijch.201800085 Kalmutzki, 2018, Secondary building units as the turning point in the development of the reticular chemistry of MOFs, Sci. Adv., 4, eaat9180, 10.1126/sciadv.aat9180 Masoomi, 2019, Mixed–metal MOFs: unique opportunities in metal–organic framework (MOF) functionality and design, Angew. Chem. Int. Ed. Engl., 58, 15188, 10.1002/anie.201902229 Rajak, 2020, Recent highlights and future prospects on mixed–metal MOFs as emerging supercapacitor candidates, Dalton Trans., 49, 11792, 10.1039/D0DT01676D Syed, 2020, Metal–organic framework nodes as a supporting platform for tailoring the activity of metal catalysts, ACS Catal., 10, 11556, 10.1021/acscatal.0c03056 Grancha, 2015, Postsynthetic improvement of the physical properties in a metal–organic framework through a single crystal to single crystal transmetallation, Angew. Chem. Int. Ed. Engl., 54, 6521, 10.1002/anie.201501691 Fortea-Pérez, 2017, The MOF–driven synthesis of supported palladium clusters with catalytic activity for carbene–mediated chemistry, Nat. Mater., 16, 760, 10.1038/nmat4910 Grancha, 2014, Oxamato–based coordination polymers: recent advances in multifunctional magnetic materials, Chem. Commun., 50, 7569, 10.1039/C4CC01734J Adam, 2019, Self-assembly of catalytically active supramolecular coordination compounds within metal-organic frameworks, J. Am. Chem. Soc., 141, 10350, 10.1021/jacs.9b03914 Mon, 2018, Stabilized Ru[(H2O)6]3+ in confined spaces (MOFs and zeolites) catalyzes the imination of primary alcohols under atmospheric conditions with wide scope, ACS Catal., 8, 10401, 10.1021/acscatal.8b03228 Tejeda-Serrano, 2018, Isolated Fe(III)–O sites catalyze the hydrogenation of acetylene in ethylene flows under front–end industrial conditions, J. Am. Chem. Soc., 140, 8827, 10.1021/jacs.8b04669 Rivero-Crespo, 2018, Confined Pt11+ water clusters in a MOF catalyze the low–temperature water–gas shift reaction with both CO2 oxygen atoms coming from water, Angew. Chem. Int. Ed. Engl., 57, 17094, 10.1002/anie.201810251 Wang, 2016, Nickel-catalyzed cross-coupling of redox-active esters with boronic acids, Angew. Chem. Int. Ed. Engl., 55, 9676, 10.1002/anie.201605463 Chen, 2015, Ligand-free nickel-catalysed 1,4-addition of arylboronic acids to α,β-unsaturated carbonyl compounds, Adv. Synth. Catal., 357, 1474, 10.1002/adsc.201400761 Shan, 2018, α,β-Diaryl unsaturated ketones via palladium catalyzed ring-opening of cyclopropenones with organoboronic acids, Org. Chem. Front., 5, 1651, 10.1039/C8QO00241J Vijayan, 2021, Advances in carbon–element bond construction under Chan–Lam cross-coupling conditions: a second decade, Synthesis, 53, 805, 10.1055/s-0040-1705971 Martins, 2006, Synthesis of substituted benzoxacycles via a domino ortho–alkylation/Heck coupling sequence, J. Org. Chem., 71, 4937, 10.1021/jo060552l Denieul, 2000, Synthesis of the benzophenone fragment of balanol via an intramolecular cyclization event, J. Org. Chem., 65, 6052, 10.1021/jo000750r Li, 2018, Palladium–catalyzed enantioselective intramolecular dearomative Heck reaction, J. Am. Chem. Soc., 140, 13945, 10.1021/jacs.8b09186 Lautens, 2002, Palladium–catalyzed sequential alkylation–alkenylation reactions. Application to the synthesis of 2–substituted–4–benzoxepines and 2,5–disubstituted–4–benzoxepines, J. Org. Chem., 67, 3972, 10.1021/jo025730z Coya, 2014, Intramolecular direct arylation and heck reactions in the formation of medium–sized rings: selective synthesis of fused indolizine, pyrroloazepine and pyrroloazocine systems, Adv. Synth. Catal., 356, 1853, 10.1002/adsc.201400075 Beller, 2002, Intermolecular Heck reaction: palladium–catalyzed coupling reactions for industrial fine chemicals syntheses, 1209 Alami, 2002, Ortho substituents direct regioselective addition of tributyltin hydride to unsymmetrical diaryl (or heteroaryl) alkynes: an efficient route to stannylated stilbene derivatives, Angew. Chem. Int. Ed. Engl., 41, 1578, 10.1002/1521-3773(20020503)41:9<1578::AID-ANIE1578>3.0.CO;2-C Kadnikov, 2003, Palladium–catalyzed carbonylative annulation of internal alkynes: synthesis of 3,4–disubstituted coumarins, J. Org. Chem., 68, 9423, 10.1021/jo0350763 Kwak, 2016, Intramolecular Mizoroki–Heck reaction of 2–thiosubstituted acrylates for the synthesis of 3–substituted benzo[b]thiophene–2–carboxylates, Synthesis, 48, 4131, 10.1055/s-0035-1562613 Madhurima, 2015, Concise three–step strategy for the synthesis of 2–benzoxepin–3(1H)–ones, Synthesis, 47, 1245, 10.1055/s-0034-1379901 He, 2010, Copper catalyzed arylation/C−C bond activation: an approach toward α–aryl ketones, J. Am. Chem. Soc., 132, 8273, 10.1021/ja1033777 Garnes-Portolés, 2021, Regioirregular and catalytic Mizoroki–Heck reactions, Nat. Catal., 4, 293, 10.1038/s41929-021-00592-3 Wucher, 2011, Breaking the regioselectivity rule for acrylate insertion in the Mizoroki–Heck reaction, Proc. Natl. Acad. Sci. USA, 108, 8955, 10.1073/pnas.1101497108 Beletskaya, 2004, Palladacycles in catalysis – a critical survey, J. Organomet. Chem., 689, 4055, 10.1016/j.jorganchem.2004.07.054 Nájera, 2016, Oxime–derived palladacycles: applications in catalysis, ChemCatChem, 8, 1865, 10.1002/cctc.201600035 Mo, 2006, The Heck reaction of electron–rich olefins with regiocontrol by hydrogen–bond donors, Angew. Chem. Int. Ed. Engl., 45, 4152, 10.1002/anie.200600799 Qin, 2012, Intermolecular Mizoroki–Heck reaction of aliphatic olefins with high selectivity for substitution at the internal position, Angew. Chem. Int. Ed. Engl., 51, 5915, 10.1002/anie.201201806 Fardost, 2014, Palladium(II)–catalyzed decarboxylative heck arylations of acyclic electron–rich olefins with internal selectivity, Adv. Synth. Catal., 356, 870, 10.1002/adsc.201301004 Dhakshinamoorthy, 2020, Metal–organic frameworks as multifunctional solid catalysts, Trends Chem., 2, 454, 10.1016/j.trechm.2020.02.004 Dhakshinamoorthy, 2016, Mixed-metal or mixed-linker metal organic frameworks as heterogeneous catalysts, Catal. Sci. Technol., 6, 5238, 10.1039/C6CY00695G