Click amidations, esterifications and one–pot reactions catalyzed by Cu salts and multimetal–organic frameworks (M–MOFs)
Tài liệu tham khảo
Jewett, 2010, Cu-free click cycloaddition reactions in chemical biology, Chem. Soc. Rev., 39, 1272, 10.1039/b901970g
Xu, 2020, Click chemistry: evolving on the fringe, Chin. J. Chem., 38, 414, 10.1002/cjoc.201900421
Kolb, 2001, Click chemistry: diverse chemical function from a few good reactions, Angew. Chem. Int. Ed. Engl., 40, 2004, 10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5
Sletten, 2009, Bioorthogonal chemistry: Fishing for selectivity in a sea of functionality, Angew. Chem. Int. Ed. Engl., 48, 6974, 10.1002/anie.200900942
Row, 2018, Constructing new bioorthogonal reagents and reactions, Acc. Chem. Res., 51, 1073, 10.1021/acs.accounts.7b00606
Gutiérrez-González, 2021, Bioorthogonal azide–thioalkyne cycloaddition catalyzed by photoactivatable ruthenium(II) complexes, Angew. Chem. Int. Ed., 60, 16059, 10.1002/anie.202103645
Musumeci, 2015, Click chemistry, a potent tool in medicinal sciences, Curr. Med. Chem., 22, 2022, 10.2174/0929867322666150421110819
Agnew, 2019, Protein–catalyzed capture agents, Chem. Rev., 119, 9950, 10.1021/acs.chemrev.8b00660
Himo, 2005, Copper(I)–catalyzed synthesis of azoles. DFT study predicts unprecedented reactivity and intermediates, J. Am. Chem. Soc., 127, 210, 10.1021/ja0471525
Worrell, 2013, Direct evidence of a dinuclear copper intermediate in Cu(I)–catalyzed azide–alkyne cycloadditions, Science, 340, 457, 10.1126/science.1229506
Grasa, 2003, Efficient transesterification/acylation reactions mediated by N–heterocyclic carbene catalysts, J. Org. Chem., 68, 2812, 10.1021/jo0267551
Arthuis, 2010, Pd0–catalyzed carbonylation of 1,1–dichloro–1–alkenes, a new selective access to Z–α–chloroacrylates, Chem. Commun., 46, 7810, 10.1039/c0cc02517h
Weng, 2011, Transesterification catalyzed by iron(III) β–diketonate species, Tetrahedron, 67, 1640, 10.1016/j.tet.2011.01.009
Lloret, 2019, Few layer 2D pnictogens catalyze the alkylation of soft nucleophiles with esters, Nat. Commun., 10, 509, 10.1038/s41467-018-08063-3
Nakatake, 2016, Chemoselective transesterification of acrylate derivatives for functionalized monomer synthesis using a hard zinc alkoxide generation strategy, Eur. J. Org. Chem., 2016, 3696, 10.1002/ejoc.201600737
Narasimhan, 2004, Esters, amides and substituted derivatives of cinnamic acid: synthesis, antimicrobial activity and QSAR investigations, Eur. J. Med. Chem., 39, 827, 10.1016/j.ejmech.2004.06.013
de Vries, 2003, Homeopathic ligand–free palladium as a catalyst in the Heck reaction. A comparison with a palladacycle, Org. Lett., 5, 3285, 10.1021/ol035184b
Leyva-Pérez, 2013, Water–stabilized three– and four–atom palladium clusters as highly active catalytic species in ligand–free C–C cross–coupling reactions, Angew. Chem. Int. Ed. Engl., 52, 11554, 10.1002/anie.201303188
Fernández, 2019, Base-controlled Heck, Suzuki, and Sonogashira reactions catalyzed by ligand-free platinum or palladium single atom and sub-nanometer clusters, J. Am. Chem. Soc., 141, 1928, 10.1021/jacs.8b07884
Francais, 2010, Total synthesis of the anti–apoptotic agents iso– and bongkrekic acids, Org. Lett., 12, 340, 10.1021/ol902676t
Breslow, 1963, Synthesis of cyclopropenones by a modified Favorskii reaction, J. Am. Chem. Soc., 85, 234, 10.1021/ja00885a029
Komatsu, 2003, Cyclopropenylium cations, cyclopropenones, and heteroanalogues–recent advances, Chem. Rev., 103, 1371, 10.1021/cr010011q
Nakamura, 2003, Cyclopropenone acetals: synthesis and reactions, Chem. Rev., 103, 1295, 10.1021/cr0100244
Wang, 2011, Chloride ion–catalyzed generation of difluorocarbene for efficient preparation of gem–difluorinated cyclopropenes and cyclopropanes, Chem. Commun., 47, 2411, 10.1039/C0CC04548A
Rullière, 2016, Difluorocarbene addition to alkenes and alkynes in continuous flow, Org. Lett., 18, 1988, 10.1021/acs.orglett.6b00573
Row, 2017, Cyclopropenones for metabolic targeting and sequential bioorthogonal labeling, J. Am. Chem. Soc., 139, 7370, 10.1021/jacs.7b03010
Curnow, 2006, Synthesis of diisopropylcyclopropenone and X–ray structure of its dichlorodimethyltin(IV) adduct, Arkivoc, iii, 43
Ciabattoni, 1965, Cycloaddition reaction of enamines with diphenylcyclopropenone, J. Am. Chem. Soc., 87, 1404, 10.1021/ja01084a060
Cunha, 1996, A semiempirical quantum mechanical approach towards understanding of cyclopropenone reactivity, J. Mol. Struc. THEOCHEM, 364, 45, 10.1016/0166-1280(95)04453-1
Li, 2017, Organocatalyzed [3 + 2] annulation of cyclopropenones and β–ketoesters: an approach to substituted butenolides with a quaternary center, Org. Lett., 19, 778, 10.1021/acs.orglett.6b03737
Greenberg, 1983, The strain energy of diphenylcyclopropenone: a reexamination, J. Am. Chem. Soc., 105, 6855, 10.1021/ja00361a018
Kascheres, 1975, Reaction of diphenylcyclopropenone with 2–aminopyridines. Synthetic and mechanistic implications, J. Org. Chem., 40, 1440, 10.1021/jo00898a013
Eicher, 1987, Synthese und reaktionen von 2,3–diaryl– und 2,3–dialkylcyclopropenoniminen, Synthesis, 1987, 887, 10.1055/s-1987-28111
Nanda, 2020, A palladium–catalyzed cascade c–c activation of cyclopropenone and carbonylative amination: easy access to highly functionalized maleimide derivatives, Org. Lett., 22, 1368, 10.1021/acs.orglett.9b04656
Kascheres, 1980, Reaction of diphenylcyclopropenone with primary and secondary enaminones. Synthetic and mechanistic implications, J. Org. Chem., 45, 5340, 10.1021/jo01314a026
Heiss, 2019, Cyclopropeniminium ions exhibit unique reactivity profiles with bioorthogonal phosphines, J. Org. Chem., 84, 7443, 10.1021/acs.joc.9b00518
Eicher, 1981, Zur reaktion von diphenylcyclopropenon, seinen funktionellen derivaten und imoniumsalzen mit aminen, Liebigs Ann., 1981, 765, 10.1002/jlac.198119810503
Friscourt, 2012, A fluorogenic probe for the catalyst–free detection of azide–tagged molecules, J. Am. Chem. Soc., 134, 18809, 10.1021/ja309000s
Favre, 2018, Sydnone reporters for highly fluorogenic copper–free click ligations, J. Org. Chem., 83, 2058, 10.1021/acs.joc.7b03004
Yaghi, 1995, Selective binding and removal of guests in a microporous metal–organic framework, Nature, 378, 703, 10.1038/378703a0
Furukawa, 2013, The chemistry and applications of metal–organic frameworks, Science, 341, 10.1126/science.1230444
Maurin, 2017, The new age of MOFs and of their porous–related solids, Chem. Soc. Rev., 46, 3104, 10.1039/C7CS90049J
Kirchon, 2018, From fundamentals to applications: a toolbox for robust and multifunctional MOF materials, Chem. Soc. Rev., 47, 8611, 10.1039/C8CS00688A
Kitagawa, 2007, Chemistry of coordination space of porous coordination polymers, Coord. Chem. Rev., 251, 2490, 10.1016/j.ccr.2007.07.009
Viciano-Chumillas, 2020, Metal–organic frameworks as chemical nanoreactors: synthesis and stabilization of catalytically active metal species in confined spaces, Acc. Chem. Res., 53, 520, 10.1021/acs.accounts.9b00609
Young, 2020, Isolating reactive metal–based species in metal–organic frameworks – viable strategies and opportunities, Chem. Sci., 11, 4031, 10.1039/D0SC00485E
Yang, 2019, Catalysis by metal organic frameworks: perspective and suggestions for future research, ACS Catal., 9, 1779, 10.1021/acscatal.8b04515
Dhakshinamoorthy, 2018, Catalysis and photocatalysis by metal organic frameworks, Chem. Soc. Rev., 47, 8134, 10.1039/C8CS00256H
Gascon, 2014, Metal organic framework catalysis: quo vadis?, ACS Catal., 4, 361, 10.1021/cs400959k
Castillo-Blas, 2018, Metal–organic frameworks incorporating multiple metal elements, Isr. J. Chem., 58, 1036, 10.1002/ijch.201800085
Kalmutzki, 2018, Secondary building units as the turning point in the development of the reticular chemistry of MOFs, Sci. Adv., 4, eaat9180, 10.1126/sciadv.aat9180
Masoomi, 2019, Mixed–metal MOFs: unique opportunities in metal–organic framework (MOF) functionality and design, Angew. Chem. Int. Ed. Engl., 58, 15188, 10.1002/anie.201902229
Rajak, 2020, Recent highlights and future prospects on mixed–metal MOFs as emerging supercapacitor candidates, Dalton Trans., 49, 11792, 10.1039/D0DT01676D
Syed, 2020, Metal–organic framework nodes as a supporting platform for tailoring the activity of metal catalysts, ACS Catal., 10, 11556, 10.1021/acscatal.0c03056
Grancha, 2015, Postsynthetic improvement of the physical properties in a metal–organic framework through a single crystal to single crystal transmetallation, Angew. Chem. Int. Ed. Engl., 54, 6521, 10.1002/anie.201501691
Fortea-Pérez, 2017, The MOF–driven synthesis of supported palladium clusters with catalytic activity for carbene–mediated chemistry, Nat. Mater., 16, 760, 10.1038/nmat4910
Grancha, 2014, Oxamato–based coordination polymers: recent advances in multifunctional magnetic materials, Chem. Commun., 50, 7569, 10.1039/C4CC01734J
Adam, 2019, Self-assembly of catalytically active supramolecular coordination compounds within metal-organic frameworks, J. Am. Chem. Soc., 141, 10350, 10.1021/jacs.9b03914
Mon, 2018, Stabilized Ru[(H2O)6]3+ in confined spaces (MOFs and zeolites) catalyzes the imination of primary alcohols under atmospheric conditions with wide scope, ACS Catal., 8, 10401, 10.1021/acscatal.8b03228
Tejeda-Serrano, 2018, Isolated Fe(III)–O sites catalyze the hydrogenation of acetylene in ethylene flows under front–end industrial conditions, J. Am. Chem. Soc., 140, 8827, 10.1021/jacs.8b04669
Rivero-Crespo, 2018, Confined Pt11+ water clusters in a MOF catalyze the low–temperature water–gas shift reaction with both CO2 oxygen atoms coming from water, Angew. Chem. Int. Ed. Engl., 57, 17094, 10.1002/anie.201810251
Wang, 2016, Nickel-catalyzed cross-coupling of redox-active esters with boronic acids, Angew. Chem. Int. Ed. Engl., 55, 9676, 10.1002/anie.201605463
Chen, 2015, Ligand-free nickel-catalysed 1,4-addition of arylboronic acids to α,β-unsaturated carbonyl compounds, Adv. Synth. Catal., 357, 1474, 10.1002/adsc.201400761
Shan, 2018, α,β-Diaryl unsaturated ketones via palladium catalyzed ring-opening of cyclopropenones with organoboronic acids, Org. Chem. Front., 5, 1651, 10.1039/C8QO00241J
Vijayan, 2021, Advances in carbon–element bond construction under Chan–Lam cross-coupling conditions: a second decade, Synthesis, 53, 805, 10.1055/s-0040-1705971
Martins, 2006, Synthesis of substituted benzoxacycles via a domino ortho–alkylation/Heck coupling sequence, J. Org. Chem., 71, 4937, 10.1021/jo060552l
Denieul, 2000, Synthesis of the benzophenone fragment of balanol via an intramolecular cyclization event, J. Org. Chem., 65, 6052, 10.1021/jo000750r
Li, 2018, Palladium–catalyzed enantioselective intramolecular dearomative Heck reaction, J. Am. Chem. Soc., 140, 13945, 10.1021/jacs.8b09186
Lautens, 2002, Palladium–catalyzed sequential alkylation–alkenylation reactions. Application to the synthesis of 2–substituted–4–benzoxepines and 2,5–disubstituted–4–benzoxepines, J. Org. Chem., 67, 3972, 10.1021/jo025730z
Coya, 2014, Intramolecular direct arylation and heck reactions in the formation of medium–sized rings: selective synthesis of fused indolizine, pyrroloazepine and pyrroloazocine systems, Adv. Synth. Catal., 356, 1853, 10.1002/adsc.201400075
Beller, 2002, Intermolecular Heck reaction: palladium–catalyzed coupling reactions for industrial fine chemicals syntheses, 1209
Alami, 2002, Ortho substituents direct regioselective addition of tributyltin hydride to unsymmetrical diaryl (or heteroaryl) alkynes: an efficient route to stannylated stilbene derivatives, Angew. Chem. Int. Ed. Engl., 41, 1578, 10.1002/1521-3773(20020503)41:9<1578::AID-ANIE1578>3.0.CO;2-C
Kadnikov, 2003, Palladium–catalyzed carbonylative annulation of internal alkynes: synthesis of 3,4–disubstituted coumarins, J. Org. Chem., 68, 9423, 10.1021/jo0350763
Kwak, 2016, Intramolecular Mizoroki–Heck reaction of 2–thiosubstituted acrylates for the synthesis of 3–substituted benzo[b]thiophene–2–carboxylates, Synthesis, 48, 4131, 10.1055/s-0035-1562613
Madhurima, 2015, Concise three–step strategy for the synthesis of 2–benzoxepin–3(1H)–ones, Synthesis, 47, 1245, 10.1055/s-0034-1379901
He, 2010, Copper catalyzed arylation/C−C bond activation: an approach toward α–aryl ketones, J. Am. Chem. Soc., 132, 8273, 10.1021/ja1033777
Garnes-Portolés, 2021, Regioirregular and catalytic Mizoroki–Heck reactions, Nat. Catal., 4, 293, 10.1038/s41929-021-00592-3
Wucher, 2011, Breaking the regioselectivity rule for acrylate insertion in the Mizoroki–Heck reaction, Proc. Natl. Acad. Sci. USA, 108, 8955, 10.1073/pnas.1101497108
Beletskaya, 2004, Palladacycles in catalysis – a critical survey, J. Organomet. Chem., 689, 4055, 10.1016/j.jorganchem.2004.07.054
Nájera, 2016, Oxime–derived palladacycles: applications in catalysis, ChemCatChem, 8, 1865, 10.1002/cctc.201600035
Mo, 2006, The Heck reaction of electron–rich olefins with regiocontrol by hydrogen–bond donors, Angew. Chem. Int. Ed. Engl., 45, 4152, 10.1002/anie.200600799
Qin, 2012, Intermolecular Mizoroki–Heck reaction of aliphatic olefins with high selectivity for substitution at the internal position, Angew. Chem. Int. Ed. Engl., 51, 5915, 10.1002/anie.201201806
Fardost, 2014, Palladium(II)–catalyzed decarboxylative heck arylations of acyclic electron–rich olefins with internal selectivity, Adv. Synth. Catal., 356, 870, 10.1002/adsc.201301004
Dhakshinamoorthy, 2020, Metal–organic frameworks as multifunctional solid catalysts, Trends Chem., 2, 454, 10.1016/j.trechm.2020.02.004
Dhakshinamoorthy, 2016, Mixed-metal or mixed-linker metal organic frameworks as heterogeneous catalysts, Catal. Sci. Technol., 6, 5238, 10.1039/C6CY00695G