Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Sản xuất sạch bê tông tự đầm với các sản phẩm phụ công nghiệp được chọn lựa - Một cái nhìn tổng quát
Tóm tắt
Các vấn đề liên quan đến sự bền vững đã trở thành mối quan tâm chính trong lĩnh vực xây dựng, do việc khai thác quá mức các nguồn nguyên liệu tự nhiên. Nhu cầu cao về nguyên liệu tự nhiên có thể liên quan đến sự gia tăng đô thị hóa và công nghiệp hóa. Nhiều thành tựu nghiên cứu quan trọng đã được thực hiện trong sản xuất bê tông tự đầm trong những năm gần đây. Tập trung vào việc sử dụng các chất thải phát sinh từ hoạt động nông nghiệp, xây dựng và công nghiệp. Tuy nhiên, việc tìm ra một khung làm việc khả thi cho việc sử dụng các vật liệu thay thế vẫn là một vấn đề. Nghiên cứu này trình bày quy trình sản xuất sạch bê tông tự đầm với các sản phẩm phụ công nghiệp được chọn lọc. Việc sử dụng vật liệu thải (vật liệu xi măng bổ sung (S.C.M.) và vật liệu tái chế) đã được khám phá. Các vật liệu, theo xu hướng nghiên cứu, được sử dụng lần lượt như một phần hoặc hoàn toàn thay thế cho các vật liệu truyền thống. Từ dữ liệu có sẵn, nghiên cứu phát hiện rằng các sản phẩm phụ công nghiệp cho thấy tiềm năng để phục vụ như một vật liệu thay thế trong sản xuất bê tông tự đầm. Nghiên cứu cho thấy rằng bê tông tự đầm xanh hơn và bền vững hơn với các tính chất được cải thiện có thể đạt được bằng cách sử dụng các sản phẩm phụ của ngành công nghiệp. Các quy trình được trình bày sẽ phục vụ như một hướng dẫn cho việc ứng dụng công nghiệp của các vật liệu này và cũng sẽ thúc đẩy lợi ích kinh tế cho lĩnh vực xây dựng.
Từ khóa
#bê tông tự đầm #sản xuất sạch #sản phẩm phụ công nghiệp #vật liệu tái chế #bền vữngTài liệu tham khảo
Okamura H, Ozawa K (1994) Self compactable HPC in Japan, pp. 31–34
Goodier CI (2003) Development of self-compacting concrete. Proc Inst Civ Eng - Struct Build 156:405–414. https://doi.org/10.1680/stbu.2003.156.4.405
Assi L, Carter K, Deaver EE et al (2018) Sustainable concrete: Building a greener future. J Clean Prod 12:1–21. https://doi.org/10.1016/j.jclepro.2018.07.123
Tavakoli D, Hashempour M (2018) Use of waste materials in concrete: A review. Pertanika J Sci Technol 26:499–522
Awoyera PO, Akinwumi II, Karthika V et al (2019) Lightweight self-compacting concrete incorporating industrial rejects and mineral admixtures: strength and durability assessment. Silicon. https://doi.org/10.1007/s12633-019-00279-2
Kalaivani M, Shyamala G, Ramesh S et al (2020) Performance evaluation of fly ash/slag based geopolymer concrete beams with addition of lime. Mater Today Proc. https://doi.org/10.1016/j.matpr.2020.01.596
Nadesan MS, Dinakar P (2018) Influence of type of binder on high-performance sintered fly ash lightweight aggregate concrete. Constr Build Mater 176:665–675. https://doi.org/10.1016/j.conbuildmat.2018.05.057
Nadesan MS, Dinakar P (2017) Structural concrete using sintered flyash lightweight aggregate: A review. Constr Build Mater 154:928–944. https://doi.org/10.1016/j.conbuildmat.2017.08.005
Rajesh Kumar K, Mahendran N (2016) Structural behaviour of deep beam using S.C.C. with chopped strands and polypropylene fibre. J Intell Fuzzy Syst 30:1219–1229. https://doi.org/10.3233/IFS-151847
Sivakrishna A, Adesina A, Awoyera PO, Kumar] K, [Rajesh (2019) Green concrete: A review of recent developments. Mater Today Proc. https://doi.org/10.1016/j.matpr.2019.08.202
Adesina A, Awoyera PO, Sivakrishna A et al (2019) Phase change materials in concrete: An overview of properties. Mater Today Proc. doi: https://doi.org/10.1016/j.matpr.2019.11.228
Awoyera PO, Adesina A, Sivakrishna A et al (2019) Alkali activated binders: Challenges and opportunities. Mater Today Proc. doi: https://doi.org/10.1016/j.matpr.2019.08.199
Su N, Hsu K-C, Chai H-W (2001) A simple mix design method for self-compacting concrete. Cem Concr Res 31:1799–1807. https://doi.org/10.1016/S0008-8846(01)00566-X
Yao ZT, Ji XS, Sarker PK et al (2015) A comprehensive review on the applications of coal fly ash. Earth-Sci Rev 141:105–121. https://doi.org/10.1016/j.earscirev.2014.11.016
Bhattacharjee U, Kandpal TC (2002) Potential of fly ash utilisation in India. Energy 27:151–166. https://doi.org/10.1016/S0360-5442(01)00065-2
Lo TY, Cui HZ (2004) Effect of porous lightweight aggregate on strength of concrete. Mater Lett 58:916–919. https://doi.org/10.1016/j.matlet.2003.07.036
Aslam M, Shafigh P, Jumaat MZ, Lachemi M (2016) Benefits of using blended waste coarse lightweight aggregates in structural lightweight aggregate concrete. J Clean Prod 119:108–117. https://doi.org/10.1016/j.jclepro.2016.01.071
Dolby PG (1995) Production and properties of Lytag aggregate fully utilized for the North Sea. In: International Symposium on Structural Lightweight Aggregate Concrete. Sandefjord-Norway, pp 326–335
Hoff G. High-strength lightweight aggregate concrete–current status and future needs. ACI Symp Publ 121:. doi: https://doi.org/10.14359/3768
Euro, LightCon (1998) LWAC material properties state-of-the-art
De la Varga I, Castro J, Bentz D, Weiss J (2012) Application of internal curing for mixtures containing high volumes of fly ash. Cem Concr Compos 34:1001–1008. https://doi.org/10.1016/j.cemconcomp.2012.06.008
Bhardwaj B, Kumar P (2017) Waste foundry sand in concrete: A review. Constr Build Mater 156:661–674. https://doi.org/10.1016/j.conbuildmat.2017.09.010
Belkowitz JS, Belkowitz WB, Moser RD et al (2015). In: Sobolev K, Shah SP (eds) The influence of nano silica size and surface area on phase development, chemical shrinkage and compressive strength of cement composites BT - Nanotechnology in construction. Springer International Publishing, Cham, pp 207–212
Zhu W, Bartos PJM, Porro A (2004) Application of nanotechnology in construction. Mater Struct 37:649–658. https://doi.org/10.1007/BF02483294
Qing Y, Zenan Z, Li S, Rongshen C (2006) A comparative study on the pozzolanic activity between nano-SiO2 and silica fume. J Wuhan Univ Technol Sci Ed 21:153–157. https://doi.org/10.1007/BF02840907
Ghafari E, Arezoumandi M, Costa H, Júlio E (2015) Influence of nano-silica addition on durability of UHPC. Constr Build Mater 94:181–188. https://doi.org/10.1016/j.conbuildmat.2015.07.009
Vandhiyan R, Perumal pillai EB, Lingeswari S (2019) Correlation between surface absorption and chloride ion penetration of concrete with nano silica and its corrosion resistance. J Environ Prot Ecol 20:1158–1171
Thangapandi K, Anuradha R, Archana N et al (2020) Experimental study on performance of hardened concrete using nano materials. KSCE J Civ Eng. https://doi.org/10.1007/s12205-020-0871-y
Murthi P, Poongodi K, Awoyera PO (2019) Enhancing the strength properties of high-performance concrete using ternary blended cement: OPC, Nano-Silica, Bagasse Ash. Silicon. https://doi.org/10.1007/s12633-019-00324-0
Jalal M, Pouladkhan A, Harandi OF, Jafari D (2015) Comparative study on effects of Class F fly ash, nano silica and silica fume on properties of high performance self compacting concrete. Constr Build Mater 94:90–104. https://doi.org/10.1016/j.conbuildmat.2015.07.001
Quercia G, Spiesz P, Hüsken G, Brouwers HJH (2014) SCC modification by use of amorphous nano-silica. Cem Concr Compos 45:69–81. https://doi.org/10.1016/j.cemconcomp.2013.09.001
Yeşilmen S, Al-Najjar Y, Balav MH et al (2015) Nano-modification to improve the ductility of cementitious composites. Cem Concr Res 76:170–179. https://doi.org/10.1016/j.cemconres.2015.05.026
Mohammed BS, Awang AB, Wong SS, Nhavene CP (2016) Properties of nano silica modified rubbercrete. J Clean Prod 119:66–75. https://doi.org/10.1016/j.jclepro.2016.02.007
Qing Y, Zenan Z, Deyu K, Rongshen C (2007) Influence of nano-SiO2 addition on properties of hardened cement paste as compared with silica fume. Constr Build Mater 21:539–545
Güneyisi E, Gesoglu M, Al-Goody A, İpek S (2015) Fresh and rheological behavior of nano-silica and fly ash blended self-compacting concrete. Constr Build Mater 95:29–44. https://doi.org/10.1016/j.conbuildmat.2015.07.142
Bernal J, Reyes E, Massana J et al (2018) Fresh and mechanical behavior of a self-compacting concrete with additions of nano-silica, silica fume and ternary mixtures. Constr Build Mater 160:196–210. https://doi.org/10.1016/j.conbuildmat.2017.11.048
Jo B-W, Kim C-H, Tae G, Park J-B (2007) Characteristics of cement mortar with nano-SiO2 particles. Constr Build Mater 21:1351–1355. https://doi.org/10.1016/j.conbuildmat.2005.12.020
Gurumoorthy N, Arunachalam K (2016) Micro and mechanical behaviour of Treated Used Foundry Sand concrete. Constr Build Mater 123:184–190. https://doi.org/10.1016/j.conbuildmat.2016.06.143
Gurumoorthy N, Arunachalam K (2019) Durability studies on concrete containing treated used foundry sand. Constr Build Mater 201:651–661. https://doi.org/10.1016/j.conbuildmat.2019.01.014
Singh G, Siddique R (2012) Abrasion resistance and strength properties of concrete containing waste foundry sand (WFS). Constr Build Mater 28:421–426. https://doi.org/10.1016/j.conbuildmat.2011.08.087
Pathak N, Siddique R (2012) Effects of elevated temperatures on properties of self-compacting-concrete containing fly ash and spent foundry sand. Constr Build Mater 34:512–521. https://doi.org/10.1016/j.conbuildmat.2012.02.026
Ahmaruzzaman M (2010) A review on the utilization of fly ash. Prog Energy Combust Sci 36:327–363
Şahmaran M, Lachemi M, Erdem TK, Yücel HE (2011) Use of spent foundry sand and fly ash for the development of green self-consolidating concrete. Mater Struct 44:1193–1204. https://doi.org/10.1617/s11527-010-9692-7
Sandhu RK, Siddique R (2019) Strength properties and microstructural analysis of self-compacting concrete incorporating waste foundry sand. Constr Build Mater 225:371–383. https://doi.org/10.1016/j.conbuildmat.2019.07.216
Aggarwal Y, Siddique R (2014) Microstructure and properties of concrete using bottom ash and waste foundry sand as partial replacement of fine aggregates. Constr Build Mater 54:210–223. https://doi.org/10.1016/j.conbuildmat.2013.12.051
Grdic ZJ, Toplicic-Curcic GA, Despotovic IM, Ristic NS (2010) Properties of self-compacting concrete prepared with coarse recycled concrete aggregate. Constr Build Mater 24:1129–1133. https://doi.org/10.1016/J.CONBUILDMAT.2009.12.029
SAFIUDDIN MD, SALAM MA, JUMAAT MZ (2011) Effects of recycled concrete aggregate on the fresh properties of self-consolidating concrete. Arch Civ Mech Eng 11:1023–1041. https://doi.org/10.1016/S1644-9665(12)60093-4
Akça KR, Çakır Ö, İpek M (2015) Properties of polypropylene fiber reinforced concrete using recycled aggregates. Constr Build Mater 98:620–630. https://doi.org/10.1016/j.conbuildmat.2015.08.133
Arun Kumar B, Sangeetha G, Srinivas A et al Models for predictions of mechanical properties of low-density self-compacting concrete prepared from mineral admixtures and pumice stone. Adv Intell Syst Comput
Palanisamy M, Poongodi K, Awoyera PO, Ravindran G (2020) Permeability properties of lightweight self-consolidating concrete made with coconut shell aggregate. Integr Med Res. https://doi.org/10.1016/j.jmrt.2020.01.092
Wang H-Y, Huang W-L (2010) Durability of self-consolidating concrete using waste LCD glass. Constr Build Mater 24:1008–1013. https://doi.org/10.1016/j.conbuildmat.2009.11.018
Kou SC, Poon CS (2009) Properties of self-compacting concrete prepared with coarse and fine recycled concrete aggregates. Cem Concr Compos 31:622–627. https://doi.org/10.1016/j.cemconcomp.2009.06.005
Güneyisi E, Gesoglu M, Algın Z, Yazıcı H (2016) Rheological and fresh properties of self-compacting concretes containing coarse and fine recycled concrete aggregates. Constr Build Mater 113:622–630. https://doi.org/10.1016/j.conbuildmat.2016.03.073
Panda KC, Bal PK (2013) Properties of self compacting concrete using recycled coarse aggregate. Procedia Eng 51:159–164. https://doi.org/10.1016/j.proeng.2013.01.023
Bahrami N, Zohrabi M, Mahmoudy SA, Akbari M (2020) Optimum recycled concrete aggregate and micro-silica content in self-compacting concrete: Rheological, mechanical and microstructural properties. J Build Eng 31:101361. https://doi.org/10.1016/j.jobe.2020.101361
Kapoor K, Singh SP, Singh B (2018) Water permeation properties of self compacting concrete made with coarse and fine recycled concrete aggregates. Int J Civ Eng 16:47–56. https://doi.org/10.1007/s40999-016-0062-x
Mohseni E, Saadati R, Kordbacheh N et al (2017) Engineering and microstructural assessment of fibre-reinforced self-compacting concrete containing recycled coarse aggregate. J Clean Prod 168:605–613. https://doi.org/10.1016/j.jclepro.2017.09.070
Tuyan M, Mardani-Aghabaglou A, Ramyar K (2014) Freeze–thaw resistance, mechanical and transport properties of self-consolidating concrete incorporating coarse recycled concrete aggregate. Mater Des 53:983–991. https://doi.org/10.1016/j.matdes.2013.07.100
Singh N, Singh SP (2016) Carbonation resistance and microstructural analysis of Low and High Volume Fly Ash Self Compacting Concrete containing Recycled Concrete Aggregates. Constr Build Mater 127:828–842. https://doi.org/10.1016/j.conbuildmat.2016.10.067
Gesoglu M, Güneyisi E, Öz H et al (2015) Durability and shrinkage characteristics of self-compacting concretes containing recycled coarse and/or fine aggregates. Adv Mater Sci Eng 2015:278296. https://doi.org/10.1155/2015/278296
Rajesh Kumar K, Gobinath R, Shyamala G et al (2020) Materials today: Proceedings Free thaw resistance of stabilized and fiber-reinforced soil vulnerable to landslides. In: Materials Today: Proceedings. Elsevier Ltd, Amsterdam
Aarthi K, Arunachalam K (2018) Durability studies on fibre reinforced self compacting concrete with sustainable wastes. J Clean Prod 174:247–255. https://doi.org/10.1016/j.jclepro.2017.10.270
Thahira Banu S, Chitra G, Awoyera P, Gobinath R Structural retrofitting of corroded fly ash based concrete beams with fibres to improve bending characteristics. Aust J Struct Eng
Borhan TM, Abo Dhaheer MS, Mahdi ZA (2020) Characteristics of sustainable self-compacting concrete reinforced by fibres from waste materials. Arab J Sci Eng 45:4359–4367. https://doi.org/10.1007/s13369-020-04460-3
Poongodi K, Murthi P (2020) Impact strength enhancement of banana fibre reinforced lightweight self-compacting concrete. Mater Today Proc. doi: https://doi.org/10.1016/j.matpr.2020.02.108
Le D-H, Sheen Y-N, Lam MN-T (2018) Fresh and hardened properties of self-compacting concrete with sugarcane bagasse ash–slag blended cement. Constr Build Mater 185:138–147. https://doi.org/10.1016/j.conbuildmat.2018.07.029
Fadaee M, Mirhosseini R, Tabatabaei R, Fadaee MJ (2015) Investigation on using copper slag as part of cementitious materials in self compacting concrete. Asian J Civ Eng 16:368–381
Robinson GP, Austin SA, Palmeri A (2013) Adoption of artificial lightweight aggregate in precast manufacture. Mag Concr Res 65:1173–1186. https://doi.org/10.1680/macr.13.00112
Małaszkiewicz D, Jastrzębski D (2018) Lightweight self-compacting concrete with sintered fly ash aggregate. Eng Environ Sci 27:328–337
Güneyisi E, Gesoglu M, Özbay E (2009) Evaluating and forecasting the initial and final setting times of self-compacting concretes containing mineral admixtures by neural network. Mater Struct 42:469–484. https://doi.org/10.1617/s11527-008-9395-5
Sua-iam G, Makul N (2013) Use of recycled alumina as fine aggregate replacement in self-compacting concrete. Constr Build Mater 47:701–710. https://doi.org/10.1016/j.conbuildmat.2013.05.065
Jain A, Gupta R, Chaudhary S (2019) Performance of self-compacting concrete comprising granite cutting waste as fine aggregate. Constr Build Mater 221:539–552. https://doi.org/10.1016/j.conbuildmat.2019.06.104
Khalil E, Abd-Elmohsen M, Anwar A (2014) Impact resistance of rubberized self-compacting concrete. Water Sci 29:45–53
Rajhans P, Panda SK, Nayak S (2018) Sustainable self compacting concrete from C&D waste by improving the microstructures of concrete ITZ. Constr Build Mater 163:557–570. https://doi.org/10.1016/j.conbuildmat.2017.12.132