Classifying vertex-transitive graphs whose order is a product of two primes

Dragan Marušič1, Raffaele Scapellato2
1IMFM, Oddelek Za Matematiko, Univerza V Ljubljani, Ljubljana, Slovenija
2Dipartimento di Matematica, Politecnico di Milano, Milano, (Italia)

Tóm tắt

Từ khóa


Tài liệu tham khảo

B. Alspach, andT. D. Parsons: A construction for vertex-transitive graphs,Canad. J. Math. 34 (1982), 307–318.

N. Biggs, andA. T. White:Permutation groups and combinatorial structures, Cambridge University Press, 1979.

J. van Bon andA. M. Cohen: Linear groups and distance-transitive graphs,Europ. J. Combinatorics 10 (1989), 399–411.

J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, andR. A. Wilson:Atlas of finite groups, Clarendon Press, Oxford, 1985.

I. A. Faradzev, andA. A. Ivanov: Distance-transitive representation of groups withPSL 2 (q)≤G≤PΓL 2 (q),Europ. J. Combin. 11 (1990), 347–356.

R. Frucht: How to describe a graph,Ann. N. Y. Acad. Sci. 175 (1970), 159–167.

X. L. Hubaut: Strongly regular graphs,Discrete Math. 13 (1975), 357–381.

B. Huppert:Endliche Gruppen, I, Springer-Verlag, Berlin, 1967.

A. A. Ivanov, M. Kh. Klin, S. V. Tsaranov, andS. V. Shpektorov: On the problem of computation of subdegrees of transitive permutation groups,Russian Math. Survey 38, no. 6 (1983), 123–124.

M. W. Liebeck, andJ. Saxl: Primitive permutation groups containing an element of large prime order,J. London Math. Soc. (2)31 (1985), 237–249.

L. Lovász: Problem 11,Combinatorial Structures and Their Applications, ed. R. Guy, H. Hanani, N. Sauer and J. Schönheim, Gordon and Breach, New York, 1970, 497.

D. Marušič: On vertex symmetric digraphs,Discrete Math. 36 (1981), 69–81.

D. Marušič: Hamiltonicity of vertex-transitivepq-graphs,Fourth Czechoslovakian Symposium on Combinatorics, Graphs and Complexity, ed. J. Nešetřil and M. Fiedler, 1992 Elsevier Science Publishers, 209–212.

D. Marušič, andR. Scapellato: Imprimitive representations ofSL (2,2 k ),J. Combin. Theory, B 58 (1993), 46–57.

D. Marušič, andR. Scapellato: Characterizing vertex-transitivepq-graphs with an imprimitive automorphism subgroup,J. Graph Theory 16 (1992), 375–387.

D. Marušič andR. Scapellato: A class of non-Cayley vertex-transitive graphs associated withPSL(2, p), Discrete Math.,109 (1992), 161–170.

D. Marušič, andR. Scapellato: A class of graphs arising from the action ofPSL(2, q 2) on cosets ofPGL(2, q),Discrete Math., to appear.

D. Marušič, andR. Scapellato: Permutation groups with conjugacy complete stabilizers,Discrete Math., to appear.

C. Praeger, H. J. Wang, andM. Y. Xu: Symmetric graphs of order a product of two distinct primes,J. Combin. Theory, B 58 (1993), 299–316.

C. Praeger, andM. Y. Xu: Vertex primitive graphs of order a product of two distinct primes,J. Combin. Theory, B, to appear.

T. Tchuda: Combinatorial-geometric characterization of some primitive representations of the groupsPSL n (q), n=2,3, PhD Thesis, Kiev, 1986 (in Russian).

H. Wielandt:Permutation groups, Academic Press, New York, 1966.