Classification of voluntary cough sound and airflow patterns for detecting abnormal pulmonary function
Tóm tắt
Involuntary cough is a classic symptom of many respiratory diseases. The act of coughing serves a variety of functions such as clearing the airways in response to respiratory irritants or aspiration of foreign materials. It has been pointed out that a cough results in substantial stresses on the body which makes voluntary cough a useful tool in physical diagnosis. In the present study, fifty-two normal subjects and sixty subjects with either obstructive or restrictive lung disorders were asked to perform three individual voluntary coughs. The objective of the study was to evaluate if the airflow and sound characteristics of a voluntary cough could be used to distinguish between normal subjects and subjects with lung disease. This was done by extracting a variety of features from both the cough airflow and acoustic characteristics and then using a classifier that applied a reconstruction algorithm based on principal component analysis. Results showed that the proposed method for analyzing voluntary coughs was capable of achieving an overall classification performance of 94% and 97% for identifying abnormal lung physiology in female and male subjects, respectively. An ROC analysis showed that the sensitivity and specificity of the cough parameter analysis methods were equal at 98% and 98% respectively, for the same groups of subjects. A novel system for classifying coughs has been developed. This automated classification system is capable of accurately detecting abnormal lung function based on the combination of the airflow and acoustic properties of voluntary cough.
Tài liệu tham khảo
Korpas J, Tomori Z: Cough and other Respiratory reflexes. Karger. 1979,
Everett CF, Kastelik JA, Thompson RH, Morice AH: Chronic persistent cough in the community: a questionnaire survey. Cough. 2007, 3: 5-10.1186/1745-9974-3-5.
Smith JA, Ashurst HL, Jack S, Woodcock AA, Earis JE: The description of cough sounds by healthcare professionals. Cough. 2006, 2: 1-10.1186/1745-9974-2-1.
Korpas J, Sadlonova J, Vrabec M: Analysis of the cough sound: an overview. Pulm Pharmacol. 1996, 9: 261-268. 10.1006/pulp.1996.0034.
Korpas J, Vrabec M, Sadlonova J, Salat D, Debreczeni LA: Analysis of the cough sound frequency in adults and children with bronchial asthma. Acta Physiol Hung. 2003, 90: 27-34. 10.1556/APhysiol.90.2003.1.4.
Day J, Goldsmith T, Barkley J, Day J, Afshari A, Frazer D: Identification of individuals using voluntary cough characteristics. Biomedical Engineering Society Meeting. 2004, 97-
Doherty MJ, Wang LJ, Donague S, Pearson MG, Downs P, Stoneman SAT, Earis JE: The acoustic properties of capsaicin-induced cough in healthy subjects. European Respiratory Journal. 1997, 10: 202-207. 10.1183/09031936.97.10010202.
Murata A, Taniguchi Y, Hashimoto Y, Kaneko Y, Takasaki Y, Kudoh S: Discrimination of productive and non-productive cough by sound analysis. Internal Medicine. 1998, 37: 732-735. 10.2169/internalmedicine.37.732.
Thorpe CW, Toop LJ, Dawson KP: Towards a Quantitative Description of Asthmatic Cough Sounds. European Respiratory Journal. 1992, 5: 685-692.
Toop LJ, Dawson KP, Thorpe CW: A Portable System for the Spectral-Analysis of Cough Sounds in Asthma. Journal of Asthma. 1990, 27: 393-397. 10.3109/02770909009073356.
Toop LJ, Thorpe CW, Fright R: Cough Sound Analysis - a New Tool for the Diagnosis of Asthma. Family Practice. 1989, 6: 83-85. 10.1093/fampra/6.2.83.
Van Hirtum A, Berckmans D: Assessing the sound of cough towards vocality. Medical Engineering & Physics. 2002, 24: 535-540. 10.1016/S1350-4533(02)00055-3.
Van Hirtum A, Berckmans D: Automated recognition of spontaneous versus voluntary cough. Medical Engineering & Physics. 2002, 24: 541-545. 10.1016/S1350-4533(02)00056-5.
Goldsmith W, Mahmoud A, Reynolds J, McKinney W, Afshari A, Abaza A, Frazer D: A System for Recording High Fidelity Cough Sound and Airflow Characteristics. Annals of Biomedical Engineering. 2009
Turk M, Pentland A: EIGENFACES FOR RECOGNITION. Journal of Cognitive Neuroscience. 1991, 3: 71-86. 10.1162/jocn.1991.3.1.71.
Belhumeur PN, Hespanha JP, Kriegman DJ: Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection. Ieee Transactions on Pattern Analysis and Machine Intelligence. 1997, 19: 711-720. 10.1109/34.598228.
Duda RO, Hart PE, Stork DG: Pattern Classification. 2000, Wiley, 2
Ross A, Nandakumar K, Jain A: Handbook of multibiometrics. 2006, Springer
Day JW, Reynolds JS, Frazer DG, Day JB: Correlation between cough sound characteristics and airway resistance in gineau pigs. Biomedical Engineering Society Meeting; Philadelphia, PA. 2004, 95-
Abaza AA, Reynolds JS, Frazer DG: Characteristics to identify subjects with different lung diseases. The 12th Biennial Symposium on Statistical Methods; Decatur, GA. 2009
Abaza AA, Mahmoud AM, Day JB, Goldsmith WT, Afshari AA, Reynolds JS, Frazer DG: Feature selection of voluntary cough patterns for detecting lung diseases. IFMBE. 2008, 323-328.
Bates JHT, Maksym GN, Navajas D, Suki B: Lung-Tissue Rheology and 1/F Noise. Annals of Biomedical Engineering. 1994, 22: 674-681. 10.1007/BF02368292.