Classification of the forest cover of Tver oblast using hyperspectral airborne imagery

Izvestiya, Atmospheric and Oceanic Physics - Tập 50 - Trang 929-942 - 2015
E. V. Dmitriev1,2
1Institute of Numerical Mathematics, Russian Academy of Sciences, Moscow, Russia
2Moscow State University, Moscow, Russia

Tóm tắt

Recent research efforts have been focused on building a system of hyperspectral aerial sounding of forest vegetation on regional scales. The components of this system are developed using data obtained in the course of measurement campaigns in Tver forestry test sites. Hyperspectral airborne surveys are conducted using a Russian video spectrometer produced by the NPO Lepton company. The technique for recognizing ground-based objects is based on Bayesian classification principles with the feature space optimization. The choice of the most informative spectral channels is based on the step-up method. We propose an approach allowing the choice of channels to be more stable. We compare the classification of timber stands on the basis of hyperspectral imagery with ground-based data to demonstrate the consistency of the system developed.

Tài liệu tham khảo

Asner, G.P., Hicke, J.A., and Lobell, D.B., Per-pixel analysis of forest structure: Vegetation indices, spectral mixture analysis and canopy reflectance modeling, Remote Sensing of Forest Environments: Concepts and Case Studies, Wulder, M.A. and Franklin, S.E., Eds., Norwell, Massachusetts: Kluwer, 2003, pp. 209–254. Atzberger, C., Development of an invertible forest reflectance model: The INFOR-model, Proceedings of the 20th EARSeL Symposium, Dresden, Germany, June 14–16, 2000, Buchroithner, M., Ed., Dresden, 2000, pp. 39–44. Bacour, C., Jacquemoud, S., Tourbier, Y., Dechambre, M., and Frangi, J.-P., Design and analysis of numerical experiments to compare four canopy reflectance models, Remote Sens. Environ., 2002, vol. 79, pp. 72–83. Combal, B., Baret, F., Weiss, M., Trubuil, A., Macé, D., Pragnere, A., Myneni, R., Knyazikhin, Y., and Wang, L., Retrieval of canopy biophysical variables from bidirectional reflectance. Using prior information to solve the ill-posed inverse problem, Remote Sens. Environ., 2002, vol. 84, pp. 1–15. Demuth, H. and Beale, M., Neural Network Toolbox for Matlab: Users Guide Version 4.1, Natrick, USA: The Mathworks Inc., 2003. Gastellu-Etchegorry, J.P., Demarez, V., Pinel, V., and Zagolski, F., Modelling radiative transfer in heterogeneous 3-D vegetation canopies, Remote Sens. Environ., 1996, vol. 58, pp. 131–156. Goel, N.S., Models of vegetation canopy reflectance and their use in estimation of biophysical parameters from reflectance data, Remote Sens. Rev., 1988, vol. 4, pp. 1–212. Gong, P., Biging, G.S., Lee, S.M., Mei, X., Sheng, Y., Pu, R., Xu, B., Schwarz, K., and Mostafa, M., Photo ecometrics for forest inventory, Geogr. Inform. Sci., 1999, vol. 5, pp. 9–14. Iaquinta, J., Pinty, B., and Privette, J.L., Inversion of a physically based bidirectional reflectance model of vegetation, IEEE Trans. Geosci. Remote Sens., 1997, vol. 15, no. 3, pp. 687–698. Kimes, D., Gastellu-Etchegorry, J., and Estève, P., Recovery of forest canopy characteristics through inversion of a complex 3D model, Remote Sens. Environ., 2002, vol. 79, pp. 320–328. Kozoderov, V.V., Kondranin, T.V., Kosolapov, V.S., Golovko, V.A., and Dmitriev, E.V., Recovery of the phytomass volume and other parameters of the state of soil and vegetation cover from data of processing of multispectral satellite images, Issled. Zemli Kosmosa, 2007, no. 1, pp. 57–65. Kozoderov, V.V., Kondranin, T.V., Dmitriev, E.V., Egorov, V.D., and Borzyak, V.V., Innovative technology for processing of multispectral space images of the Earth’s surface, Issled. Zemli Kosmosa, 2008, no. 1, pp. 56–72. Kozoderov, V.V. and Dmitriev, E.V., Remote sensing of soils and vegetation: Regional aspects, Int. J. Remote Sens., 2008, vol. 29, pp. 2733–2748. Kozoderov, V.V., Kondranin, T.V., Kazantsev, O.Yu., Bobylev, V.I., Shcherbakov, M.V., Borzyak, V.V., Dmitriev, E.V., Egorov, V.D., Kamentsev, V.P., Belyakov, A.Yu., and Loginov, S.B., Processing and interpretation of hyperspectral aerospace measurement data for remote diagnostics of natural and technogenic objects, Issled. Zemli Kosmosa, 2009, no. 2, pp. 36–54. Kozoderov, V.V. and Dmitriev, E.V., Aerospace sounding the soil and vegetation cover: Models, algorithmic and software support, ground-based validation, Issled. Zemli Kosmosa, 2010, no. 1, pp. 69–86. Kozoderov, V.V. and Dmitriev, E.V., Remote sensing of soils and vegetation: Pattern recognition and forest stand structure assessment, Int. J. Remote Sens., 2011, vol. 32, no. 3, pp. 5699–5717. Kozoderov, V.V., Kondranin, T.V., Dmitriev, E.V., Kazantsev, O.Yu., Persev, I.V., and Shcherbakov, M.V., Processing of hyperspectral aerospace sounding data, Issled. Zemli Kosmosa, 2012, no. 5, pp. 3–11. Mestetskii, L.M., Matematicheskie metody raspoznavaniya obrazov. Kurs lektsii (Mathematical Methods of Pattern Recognition: A Course of Lectures), Moscow: Moscow State University, 2002. Rautiainen, M., Stenberg, P., Nilson, T., and Kuusk, A., The effect of crown shape on the reflectance of coniferous stands, Remote Sens. Environ., 2004, vol. 89, pp. 41–52. Roberts, G., A review of the application of BRDF models to infer land cover parameters at regional and global scales, Progr. Phys. Geogr., 2001, vol. 25, no. 4, pp. 483–511. Rosema, A., Verhoef, W., Noorbergen, H., and Borgesius, J.J., A new forest light interaction model in support of forest monitoring, Remote Sens. Environ., 1992, vol. 42, pp. 23–41. Suits, G.H., The calculation of directional reflectance of a vegetation canopy, Remote Sens. Environ., 1972, vol. 2, pp. 117–125. Udelhoven, T., Naumann, D., and Schmitt, J., Development of a hierarchical classification system with artificial neural networks and FTIR spectra for the identification of bacteria, Appl. Spectrosc., 2000, vol. 54, no. 10, pp. 1471–1479. Verhoef, W., Light scattering by leaf layers with application to canopy reflectance modeling: The SAIL model, Remote Sens. Environ., 1984, vol. 16, pp. 125–141. Weiss, C.R., Moideen, S.V., Croft, S.L., and Hougton, P.J., Activity of extracts and isolated Naphthoquinones from Kigelia pinnata against Plasmodium falciparum, J. Nat. Prod., 2000, vol. 63, no. 9, pp. 1306–1309.