Classification of hydrous meteorites (CR, CM and C2 ungrouped) by phyllosilicate fraction: PSD-XRD modal mineralogy and planetesimal environments

Geochimica et Cosmochimica Acta - Tập 149 - Trang 206-222 - 2015
K. T. Howard1,2,3, C. M. O'd. Alexander4, D. L. Schrader5, K. A. Dyl6
1American Museum of Natural History, United States
2Kingsborough Community College of the City University of New York, 2001 Oriental Blvd., Brooklyn, NY 11235, United States
3The Natural History Museum, London, United Kingdom
4Department of Terrestrial Magnetism, Carnegie Institution of Washington, 5241 Broad Branch Road, NW Washington, DC 20015-1305, United States
5Smithsonian Institution, National Museum of Natural History, Washington, 10th & Constitution, NW Washington, DC 20560-0119, United States
6Department of Applied Geology, Curtin University, Perth, WA 6845, Australia

Tóm tắt

Từ khóa


Tài liệu tham khảo

Abreu, 2010, Early solar system processes recorded in the matrices of two highly pristine CR3 carbonaceous chondrites MET 00426 and QUE 99177, Geochim. Cosmochim. Acta, 74, 1146, 10.1016/j.gca.2009.11.009

Abreu, 2013, Opaque assemblages in CR2 Graves Nunataks (GRA) 06100 as indicators of shock-driven hydrothermal alteration in the CR chondrite parent body, Meteor. Planet. Sci, 48, 2406, 10.1111/maps.12227

Abreu N. M., Bland P. A. and Rietmeijer F. J. M. (2014) Effects of shock metamorphism on the matrix of CR chondrites: GRA 06100. Lunar Planet. Sci. 45. #2753 (abstr.).

Alexander, 2012, The provenances of asteroids and their contributions to the volatile inventories of the terrestrial planets, Science, 337, 721, 10.1126/science.1223474

Alexander, 2013, The classification of CM and CR chondrites using bulk H, C and N abundances and isotopic compositions, Geochim. Cosmochim. Acta, 123, 244, 10.1016/j.gca.2013.05.019

Barber, 1985, Phyllosilicates and other layer structured materials in stony meteorites, Clay Miner., 20, 415, 10.1180/claymin.1985.020.4.01

Beck, 2010, Hydrous mineralogy of CM and CI chondrites from infrared spectroscopy and their relationship with low albedo asteroids, Geochim. Cosmochim. Acta, 74, 4881, 10.1016/j.gca.2010.05.020

Beck, 2014, Transmission infrared spectra (2–25 lm) of carbonaceous chondrites (CI CM CV–CK CR C2 ungrouped): Mineralogy water and asteroidal processes, Icarus, 229, 263, 10.1016/j.icarus.2013.10.019

Bland, 2004, Mineralogy of carbonaceous chondrites by X-ray diffraction and Mössbauer spectroscopy, Meteorit. Planet. Sci., 39, 3, 10.1111/j.1945-5100.2004.tb00046.x

Bland, 2005, Volatile fractionation in the early Solar System and chondrule/matrix complementarity, Proc. Natl. Acad. Sci., 102, 13755, 10.1073/pnas.0501885102

Bland, 2009, Why aqueous alteration in asteroids was isochemical: High porosity≠high permeability, Earth Planet. Sci. Lett., 287, 559, 10.1016/j.epsl.2009.09.004

Brearley A. J. and Martinez C. (2010) Ubiquitous exsolution of pentlandite and troilite in pyrrhotite from the TIL 91722 CM2 carbonaceous chondrite: A record of low temperature solid state processes. Lunar Planet. Sci. 41. #1689 (abstr.).

Browning, 1998, Constraints on the anhydrous precursor mineralogy of fine-grained materials in CM Carbonaceous chondrites, Meteorit. Planet. Sci., 33, 1213, 10.1111/j.1945-5100.1998.tb01306.x

Browning, 1996, Correlated alteration effects in CM carbonaceous chondrites, Geochim. Cosmochim. Acta, 60, 2621, 10.1016/0016-7037(96)00121-4

Chizmadia, 2008, Mineralogy aqueous alteration and primitive textural characteristics of fine-grained rims in the Y-791198 CM2 carbonaceous chondrite: TEM observations and comparison to ALHA81002, Geochim. Cosmochim. Acta, 72, 602, 10.1016/j.gca.2007.10.019

Clayton, 1999, Oxygen isotope studies of carbonaceous chondrites, Geochim. Cosmochim. Acta, 63, 2089, 10.1016/S0016-7037(99)00090-3

Cressey, 1998, Dealing with absorption and micro absorption in quantitative phase analysis, Int. Union Crystallogr. Newsletter, 20, 16

Cressey, 1996, Rapid whole-pattern profile stripping method for the quantification of multiphase samples, Powder Diffr., 11, 35, 10.1017/S0885715600008885

Dunn, 2010, Analysis of ordinary chondrites using powder X-ray diffraction: Modal mineral abundance, Meteorit. Planet. Sci., 45, 127

Dyl K., Manning C. E. and Young E. D. (2006). Modeling aqueous alteration of CM carbonaceous chondrites: Implications for cronstedtite formation by water–rock reaction. Lunar Planet. Sci. 37. #2060 (abstr.).

Eggleton, 1984, Formation of iddingsite rims of olivine: A transmission electron microscope study, Clays Clay Min., 32, 1, 10.1346/CCMN.1984.0320101

Fuchs, 1973, Mineralogy crystal chemistry and composition of the Murchison (C2) meteorite, Smithsonian Contrib. Earth Sci., 10, 1

Garenne, 2014, The abundance and stability of “water” in type 2 carbonaceous chondrites (CICM and CR), Geochim. Cosmochim. Acta, 137, 93, 10.1016/j.gca.2014.03.034

Guo, 2007, Temperatures of aqueous alteration and evidence for methane generation on the parent bodies of the CM chondrites, Geochim. Cosmochim. Acta, 71, 5565, 10.1016/j.gca.2007.07.029

Harju, 2014, Progressive aqueous alteration of CR carbonaceous chondrites, Geochim. Cosmochim. Acta, 139, 267, 10.1016/j.gca.2014.04.048

Hiroi, 2001, The Tagish Lake Meteorite: A possible sample from a D-type asteroid, Science, 293, 2234, 10.1126/science.1063734

Howard, 2009, Modal mineralogy of CM2 chondrites by X-ray diffraction (PSD-XRD). Part 1: Total phyllosilicate abundance and the degree of aqueous alteration, Geochim. Cosmochim. Acta, 73, 4576, 10.1016/j.gca.2009.04.038

Howard, 2010, Modal mineralogy of CV3 chondrites by position sensitive detector X-ray diffraction (PSD-XRD), Geochim. Cosmochim. Acta, 74, 5084, 10.1016/j.gca.2010.06.014

Howard, 2011, Modal mineralogy of CM chondrites by X-ray diffraction (PSD-XRD): Part 2. Degree nature and settings of aqueous alteration, Geochim. Cosmochim. Acta, 75, 2735, 10.1016/j.gca.2011.02.021

Howard K. T., Benedix G. K., Bland P. A., Gibson J., Greenwood R. C., Franchi I. A. and Cressey G. (2013) Non-progressive aqueous alteration of CM carbonaceous chondrites: The perspective of modal mineralogy and bulk O-isotopes. Lunar Planet. Sci. 44. #2520 (abstr.).

Kallemeyn, 1981, The compositional classification of chondrites—I the carbonaceous chondrite groups, Geochim. Cosmochim. Acta, 45, 1217, 10.1016/0016-7037(81)90145-9

Kallemeyn, 1994, The compositional classification of chondrites: VI. The CR carbonaceous chondrite groups, Geochim. Cosmochim. Acta, 58, 2873, 10.1016/0016-7037(94)90121-X

Keller L. P. and Messenger S. (2012) Formation and processing of amorphous silicates in primitive carbonaceous chondrites and cometary dust. Lunar Planet. Sci. 43. #1880 (abstr.).

King A. J., Schofield P. E., Howard K. T. and Russell S. S. (2014) Modal mineralogy of CI and CI-like chondrites by position sensitive detector X-ray diffraction. Lunar Planet. Sci. 45. #1861 (abstr.).

Kurahashi, 2008, 26Al-26Mg systematics of chondrules in a primitive CO chondrite, Geochim. Cosmochim. Acta., 72, 3865, 10.1016/j.gca.2008.05.038

Lauretta, 2000, Mineralogy of fine-grained rims in the ALH81002 CM chondrite, Geochim. Cosmochim. Acta, 64, 3263, 10.1016/S0016-7037(00)00425-7

Le Guillou, 2014, Relationships between organics water and early stages of aqueous alteration in the pristine CR3.0 chondrite MET00426, Geochim. Cosmochim. Acta, 131, 344, 10.1016/j.gca.2013.10.024

Le Guillou, 2011, Aqueous alteration of organic matter and amorphous silicate in pristine chondrites: A multiscale study, Mineral. Mag., 75, 1291

Lodders, 2001, Solar system abundances and condensation temperatures of the elements, Astrophys. J., 591, 1220, 10.1086/375492

Madsen, 1999, Quantitative phase analysis round robin, Int. Union Crystallogr. Newsletter, 22, 3

Madsen, 2001, Outcomes of the international union of crystallography commission on powder diffraction round robin on quantitative phase analysis: Samples 1a to 1h, J. Appl. Crystallogr., 34, 409, 10.1107/S0021889801007476

Maldonado E. M. and Brearley A. J. (2011) Exsolution textures in pyrrhotite and alteration of pyrrhotite and pentlandite in the CM2 carbonaceous chondrites Cresent Mighei and ALH 81002. Lunar Planet. Sci. 42. #2271 (abstr.).

Marty, 2012, The origins and concentrations of water carbon nitrogen and noble gases on Earth, Earth Planet. Sci. Lett., 313–314, 56, 10.1016/j.epsl.2011.10.040

McAdam, 2014, Aqueous alteration on asteroids: Linking the mineralogy and spectroscopy of CM and CI chondrites, Icarus, 245, 220

McAdam M. M., Sunshine J. M., Howard K. T., Kelly M. S. and McCoy T. J. (2013) Fe and Mg compositional variations of CM/CI meteorites and dark asteroids. Lunar Planet. Sci. 44. #1048 (abstr.).

Menzies, 2005, A Mossbauer spectroscopy and X-ray diffraction study of ordinary chondrites: Quantification of modal mineralogy and implications for redox conditions during metamorphism, Meteorit. Planet. Sci., 40, 1023, 10.1111/j.1945-5100.2005.tb00171.x

Metzler, 1992, Accretionary dust mantles in CM chondrites: Evidence for solar nebular processes, Geochim. Cosmochim. Acta, 56, 2873, 10.1016/0016-7037(92)90365-P

Mittlefehldt, 2002, Geochemistry of the ungrouped carbonaceous chondrite Tagish Lake the anomalous CM chondrite Bells and comparison with CI and CM chondrites, Meteorit. Planet. Sci., 37, 703, 10.1111/j.1945-5100.2002.tb00850.x

Morlok, 2006, Brecciation and chemical heterogeneities of CI chondrites, Geochim. Cosmochim. Acta, 70, 5371, 10.1016/j.gca.2006.08.007

Palmer, 2011, Aqueous alteration of kamacite in CM chondrites, Meteoritics Planet. Sci., 46, 1587, 10.1111/j.1945-5100.2011.01251.x

Pulguta, 2010, Fluid flow and chemical alteration in carbonaceous chondrite parent bodies, Earth Planet. Sci. Lett., 296, 235, 10.1016/j.epsl.2010.05.003

McSween, 1979, Are carbonaceous chondrites primitive or processed – A review, Rev. Geophys. Space Phys., 17, 1059, 10.1029/RG017i005p01059

McSween, 1979, Alteration in CM carbonaceous chondrites inferred from modal and chemical variations in matrix, Geochim. Cosmochim. Acta, 43, 1761, 10.1016/0016-7037(79)90024-3

McSween, 1987, Aqueous alteration in carbonaceous chondrites: Mass balance constraints on matrix mineralogy, Geochim. Cosmochim. Acta, 51, 2469, 10.1016/0016-7037(87)90298-5

Rosenberg, 2001, Modeling aqueous alteration of CM carbonaceous chondrites, Meteorit. Planet. Sci., 36, 239, 10.1111/j.1945-5100.2001.tb01868.x

Rubin, 2007, Progressive aqueous alteration of CM carbonaceous chondrites, Geochim. Cosmochim. Acta, 71, 2361, 10.1016/j.gca.2007.02.008

Schrader, 2011, The formation and alteration of the Renazzo-like carbonaceous chondrites I: Implications of bulk-oxygen isotopic composition, Geochim. Cosmochim. Acta, 75, 308, 10.1016/j.gca.2010.09.028

Schrader, 2013, The formation and alteration of the Renazzo-like carbonaceous chondrites II: Linking O-isotope composition and oxidation state of chondrule olivine, Geochim. Cosmochim. Acta, 101, 302, 10.1016/j.gca.2012.09.045

Tomeoka, 1985, Indicators of aqueous alteration in CM carbonaceous chondrites: Microtextures of a layered mineral containing Fe, S, O and Ni, Geochim. Cosmochim. Acta, 49, 2149, 10.1016/0016-7037(85)90073-0

Tomeoka, 1989, Mineralogical alteration of CM chondrites: A review, Proc. NIPR Symp. Antarct. Meteorites, 2, 221

Van Schmus, 1967, A chemical-petrologic classification for the chondritic meteorites, Geochim. Cosmochim. Acta, 31, 747, 10.1016/S0016-7037(67)80030-9

Wasson, 2009, Composition of matrix in the CR chondrite LAP 02342, Geochim. Cosmochim. Acta, 73, 1436, 10.1016/j.gca.2008.11.044

Weisberg, 2007, The GRO 95577 CR1 chondrite and hydration of the CR parent body, Meteorit. Planet. Sci., 42, 1495, 10.1111/j.1945-5100.2007.tb00587.x

Weisberg, 1993, The CR (Renazzo-type) carbonaceous chondrite group and its implications, Geochim. Cosmochim. Acta, 57, 1567, 10.1016/0016-7037(93)90013-M

Weisberg, 2006, Systematics and evaluation of meteorite classification, 19

Wilson, 1999, The internal structures and densities of asteroids, Meteorit. Planet. Sci., 34, 479, 10.1111/j.1945-5100.1999.tb01355.x

Young, 1999, Fluid flow in chondritic parent bodies: Deciphering the compositions of planetesimals, Science, 286, 1331, 10.1126/science.286.5443.1331

Zolensky, 1997, CM chondrites exhibit the complete petrologic range from type 2 to 1, Geochim. Cosmochim. Acta, 61, 5099, 10.1016/S0016-7037(97)00357-8

Zolensky, 1993, Mineralogy and composition of matrix and chondrule rims in carbonaceous chondrites, Geochim. Cosmochim. Acta, 57, 3123, 10.1016/0016-7037(93)90298-B

Zolotov, 2012, Aqueous fluid composition in CI chondritic materials: Chemical equilibrium assessments in closed systems, Icarus, 220, 713, 10.1016/j.icarus.2012.05.036

Zolotov, 2014, Formation of brucite and cronstedtite-bearing mineral assemblages on Ceres, Icarus, 228, 13, 10.1016/j.icarus.2013.09.020