Classification and properties of the $$\pi $$ -submaximal subgroups in minimal nonsolvable groups

Bulletin of Mathematical Sciences - Tập 8 - Trang 325-351 - 2017
Wenbin Guo1, Danila O. Revin1,2,3
1Department of Mathematics, University of Science and Technology of China, Hefei, People's Republic of China
2Sobolev Institute of Mathematis SB RAS, Novosibirsk, Russia
3Novosibirsk State University, Novosibirsk, Russia

Tóm tắt

Let $$\pi $$ be a set of primes. According to H. Wielandt, a subgroup H of a finite group X is called a $$\pi $$ -submaximal subgroup if there is a monomorphism $$\phi :X\rightarrow Y$$ into a finite group Y such that $$X^\phi $$ is subnormal in Y and $$H^\phi =K\cap X^\phi $$ for a $$\pi $$ -maximal subgroup K of Y. In his talk at the celebrated conference on finite groups in Santa-Cruz (USA) in 1979, Wielandt posed a series of open questions and among them the following problem: to describe the $$\pi $$ -submaximal subgroup of the minimal nonsolvable groups and to study properties of such subgroups: the pronormality, the intravariancy, the conjugacy in the automorphism group etc. In the article, for every set $$\pi $$ of primes, we obtain a description of the $$\pi $$ -submaximal subgroup in minimal nonsolvable groups and investigate their properties, so we give a solution of Wielandt’s problem.

Tài liệu tham khảo

Bray, J.N., Holt, D.F., Roney-Dougal, C.M.: The Maximal Subgroups of the Low-Dimensional Finite Classical Groups. Cambridge University Press, Cambridge (2013) Conway, J.H., Curtis, R.T., Norton, S.P., Parker, R.A., Wilson, R.A.: Atlas of Finite Groups, p. 252. Clarendon Press, Oxford (1985) Chunikhin, S.A.: Über auflösbare Gruppen. Mitt. Forsch.-Inst. Math. Mech. Univ. Tomsk. 2, 222–223 (1938) Doerk, K., Hawks, T.: Finite Soluble Groups. Walter de Gruyter, Berlin (1992) Guo, W.: The Theory of Classes of Groups, Beijing. Kluwer Academic Publishers, New York (2006) Guo, W.: Structure Theory of Canonical Classes of Finite Groups. Springer, Berlin (2015) Guo, W., Revin, D.O.: On the class of groups with pronormal Hall \(\pi \)-subgroups. Sib. Math. J. 55(3), 415–427 (2014) Guo, W., Revin, D.O.: On maximal and submaximal X-subgroups, Algebra Log. (accepted) Guo, W., Revin, D.O.: On a relation between the conjugacy of the maximal and submaximal X-subgroups, Algebra Log. (accepted) Guo, W., Revin, D.O., Vdovin, E.P.: Confirmation for Wielandt’s conjecture. J. Algebra 434, 193–206 (2015) Hartley, B.: A theorem of Sylow type for a finite groups. Math. Z. 122(4), 223–226 (1971) Hartley, B.: Helmut Wielandt on the \(\pi \)-structure of finite groups, Helmut Wielandt: mathematical works. In: Huppert, B., Schneider, H. (eds.) Group theory, vol. 1, pp. 511–516. de Gruyter, Berlin (1994) Hall, P.: A note on soluble groups. J. Lond. Math. Soc. 3, 98–105 (1928) Hall, P.: A characteristic property of soluble groups. J. Lond. Math. Soc. 12, 198–200 (1937) Hall, P.: Theorems like Sylow‘s. Proc. Lond. Math. Soc. 6(22), 286–304 (1956) Huppert, B.: Endliche Gruppen. Springer, Berlin (1967) Kleidman, P.B.: A proof of the Kegel–Wielandt conjecture on subnormal subgroups. Ann. Math. 133(2), 369–428 (1991) Kleidman, P.B., Liebeck, M.: The Subgroup Structure of the Finite Classical Groups. Cambridge University Press, Cambridge (1990) Kondratiev, A.S.: Normalizers of the Sylow 2-subgroups in finite simple groups. Math. Notes 78(3), 338–346 (2005) Revin, D.O.: The \(D_\pi \)-property in finite simple groups. Algebra Logic 47(3), 210–227 (2008) Revin, D.O.: The \(D_\pi \)-Property in a Class of Finite Groups. Algebra Logic 41(3), 187–206 (2002) Revin, D.O., Vdovin, E.P.: Hall subgroups of finite groups. Contemp. Math. 402, 229–265 (2006) Revin, D.O., Vdovin, E.P.: On the number of classes of conjugate Hall subgroups in finite simple groups. J. Algebra 324(12), 3614–3652 (2010) Revin, D.O., Vdovin, E.P.: An existence criterion for Hall subgroups of finite groups. J. Group Theory 14(1), 93–101 (2011) Revin, D.O., Vdovin, E.P.: Frattini argument for Hall subgroups. J. Algebra 414, 95–104 (2014) Shemetkov, L.A.: Generalizations of Sylow’s theorem. Sib. Math. J. 44(6), 1127–1132 (2003) Suzuki, M.: On a class of doubly transitive groups. Ann. Math. 75(1), 105–145 (1962) Suzuki, M.: Group Theory II. Springer, Berlin (1986) Thompson, J.G.: Nonsolvable finite groups all of whose local subgroups are solvable. Bull. Am. Math. Soc. 74, 383–437 (1968) Vdovin, E.P., Revin, D.O.: A conjugacy criterion for Hall subgroups in finite groups. Sib. Math. J. 51(3), 402–409 (2010) Vdovin, E.P., Revin, D.O.: Theorems of Sylow type. Rus. Math. Surv. 66(5), 829–870 (2011) Vdovin, E.P., Revin, D.O.: Pronormality of Hall subgroups in finite simple groups. Sib. Math. J. 53(3), 419–430 (2012) Vdovin, E.P., Revin, D.O.: On the pronormality of Hall subgroups. Sib. Math. J. 54(1), 22–28 (2013) Vdovin, E.P., Revin, D.O.: The existence of pronormal \(\pi \)-Hall subgroups in \(E_\pi \)-groups. Sib. Math. J. 56(3), 379–383 (2015) Wielandt, H.: Eine Verallgemeinerung der invarianten Untergruppen. Math. Z. 45, 209–244 (1939) Wielandt, H.: Zum Satz von Sylow. Math. Z. 60, 407–408 (1954) Wielandt, H.: Sur la Stucture des groupes composés, Séminare Dubriel-Pisot (Algèbre et Théorie des Nombres), 17e anée, pp. 10 1963/64. N17 Wielandt, H., Zusammengesetzte Gruppen: Hölder Programm heute, The Santa Cruz Conference on Finite Groups, Santa Cruz. In: Proceedings Symposium Pure Mathematics 37. Providence RI: American Mathematical Society, vol. 1980, pp. 161–173 (1979) Wielandt, H.: Zusammengesetzte Gruppen endlicher Ordnung, Vorlesung an der Universität Tübingen im Wintersemester 1963/64. Helmut Wielandt: Mathematical Works. In: Huppert, B., Schneider, H. (eds.) Group Theory, vol. 1, pp. 607–516. de Gruyter, Berlin (1994)