Classical theorems of probability on Gelfand pairs—Khinchin’s theorems and Cramér’s theorem
Tóm tắt
Từ khóa
Tài liệu tham khảo
[BH] W. R. Bloom and H. Heyer,Harmonic Analysis on Probability Measures on Hypergroups, Walter de Gruyter, Berlin-New York, 1995.
[BJR] C. Benson, J. Jenkins and G. Ratcliff,On Gelfand pairs associated with solvable Lie groups, Transactions of the American Mathematical Society321 (1990), 85–116.
[Da] E. B. Davies,Heat Kernels and Spectral Theory, Cambridge Tracts in Mathematics, 92, Cambridge University Press, Cambridge, 1990.
[DM] S. G. Dani and M. McCrudden,Factors, roots and embeddability of measures on Lie groups, Mathematische Zeitschrift199 (1988) 369–385.
[DR] S. G. Dani and C. R. E. Raja,Asymptotics of measures under group automorphisms and an application to factor set, inProceedings of (1996) International Colloquium on Lie Groups and Ergodic Theory, Tata Institute of Fundamental Research, Bombay, Narosa Publishers, New Delhi, India, 1998, pp. 59–73.
[Du] M. Duflo, Représentations de semi-groupes de measures sur un groupe localement compact, Annales de l’Institut Fourier28 (1978), 225–249.
[E] P. Eisele,On shifted convolution powers of probability measure, Mathematische Zeitschrift211 (1992), 557–574.
[F] J. Faraut,Analyse Harmonique sur les Paires de Guelfand et les Espaces Hyperboliques, Analyse Harmonique, les Cours du C.I.M.P.A., Nice, 1983, pp. 315–446.
[Fe] G. M. Feldman,Arithmetic of probability distributions and characterization problems on abelian groups, Translations of Mathematical Monographs, 116, American Mathematical Society, Providence, RI, 1993.
[FH] J. Faraut and Kh. Harzalah,Distances Hilbertiennes invariantes sur un espeace homogène, Annales de l’Institut Fourier24 (1974), 171–217.
[GV] R. Gangolli and V. S. Varadarajan,harmonic Analysis on Spherical Functions on Real Reductive Groups, A Series of Modern Surveys in Mathematics, Springer-Verlag, Berlin-Heidelberg, 1988, p. 101.
[G1] P. Graczyk,Dispersions and a central limit theorem on symmetric spaces, Bulletin des Sciences Mathématiques118 (1994), 105–116.
[G2] P. Graczyk,Cramér theorem on symmetric spaces of noncompact type, Journal of Theoretical Probability7 (1994), 609–613.
[G3] P. Graczyk,Factorization theorem for probability measures on symmetric spaces of non-compact type, Journal of Theoretical Probability12 (1999), 53–61.
[He] H. Heyer,Probability Measures on Locally Compact Groups, A Series of Modern Surveys in Mathematics, Springer-Verlag, Berlin-Heidelberg, 1987. p. 17.
[He1] H. Heyer,Convolution semigroups of probability measures on Gelfand pairs, Expositiones Mathematicae1 (1983), 3–45.
[He2] H. Heyer,Infinitely divisible probability measures on a discrete Gelfand pair, Nagoya Mathematical Journal116 (1989), 43–62.
[HHSWZ] W. Hazod, K. H. Hofmann, H.-P. Scheffler, M. Wüstner and H. Zeuner,Normalizers of compact subgroups, the existence of commuting automorphisms, and application to operator semistable measures, Journal of Lie Theory8 (1998), 189–209.
[Ho] G. Hochschild,The Structure of Lie Groups, Holden-Day, Inc., London, 1965.
[L] J. Lamperti,The arithmetic of certain semi-groups of positive operators, Proceedings of Cambridge Philosophical Society64 (1968), 161–166.
[Le] G. Letac,Problèmes classiques de probabilité sur un couple de Gelfand, inAnalytical Methods in Probability Theory (Oberwolfach, 1980), Lecture Notes in Mathematics861, Springer, Berlin-New York, 1981, pp. 93–120.
[Ma] J. Marcinkiewicz,Sur les variables alétoires enroulées, Comptes Rendus Séances et Conference SMF1938 (1939), 34–36.
[Mc] M. McCrudden,An introduction to the embedding problem for probabilities on locally compact groups, Positivity in Lie theory: open problems, de Gruyter Expositions in Mathematics26 (1998), 147–164.
[MV] K. Mokni and G. Van Dijk,Harmonic analysis on a class of generalized Gelfand pairs associated with hyperbolic spaces, Russian Journal of Mathematical Physics5 (1997), 167–178.
[R] C. R. E. Raja,On a class of Hungarian semigroups and the factorization theorem of Khinchin, Journal of Theoretical Probability12 (1999), 71–79.
[RS] I. Z. Ruzsa and G. J. Szekely,Algebraic Probability Theory, Wiley, Chichester, 1988.
[S1] R. Shah,Semistable Measures and Limit Theorems on Real and p-adic groups, Monatshefte für Mathematik115 (1993), 191–213.
[S2] R. Shah,The central limit problem on locally compact groups, Israel Journal of Mathematics110 (1999), 189–218.
[Te] K. Teloken,Limit theorems for probability measures on totally disconnected groups, Semigroup Forum58 (1999), 69–84.
[Tr] I. R. Truhina,A problem related to the arithmetic of probability measures on the sphere, Journal of Soviet Mathematics17 (1981), 2321–2333.
[V] V. S. Varadarajan,Lie Groups, Lie Algebras, and their Representations, Graduate Texts in Mathematics 102, Springer-Verlag, New York-Berlin, 1984.
[W] N. Wallach,Real Reductive Groups, Academic Press, New York-London, 1988.
[Ze] A. Zempléni,On the heredity of Hun and Hungarian property, Journal of Theoretical Probability3 (1990), 599–610.