Classical solutions to one-dimensional stationary quantum Navier–Stokes equations

Journal de Mathématiques Pures et Appliquées - Tập 96 - Trang 521-526 - 2011
Jianwei Dong1
1Department of Mathematics and Physics, Zhengzhou Institute of Aeronautical Industry Management, Zhengzhou 450015, PR China

Tài liệu tham khảo

Jüngel, 2010, Global weak solutions to compressible Navier–Stokes equations for quantum fluids, SIAM J. Math. Anal., 42, 1025, 10.1137/090776068 Jüngel, 2011, Effective velocity in compressible Navier–Stokes equations with third-order derivatives, Nonlinear Anal., 74, 2813, 10.1016/j.na.2011.01.002 Dong, 2010, A note on barotropic compressible quantum Navier–Stokes equations, Nonlinear Anal., 73, 854, 10.1016/j.na.2010.03.047 Jiang, 2011, A remark on weak solutions to the barotropic compressible quantum Navier–Stokes equations, Nonlinear Anal. Real World Appl., 12, 1733, 10.1016/j.nonrwa.2010.11.005 A. Jüngel, J.P. Milišić, Full compressible Navier–Stokes equations for quantum fluids: derivation and numerical solution, Kinetic Related Models, 2011, in press. A. Jüngel, J.P. Milišić, Quantum Navier–Stokes equations, in: Proceedings of ECMI, 2010, submitted for publication. A. Jüngel, Dissipative quantum fluid models, Revista Mat. Univ. Parma, 2011, in press. Bresch, 2006, On the construction of approximate solutions for the 2D viscous shallow water model and for compressible Navier–Stokes models, J. Math. Pures Appl., 86, 362, 10.1016/j.matpur.2006.06.005 Bresch, 2007, On the existence of global weak solutions to the Navier–Stokes equations for viscous compressible and heat conducting fluids, J. Math. Pures Appl., 87, 57, 10.1016/j.matpur.2006.11.001 Bresch, 2007, On compressible Navier–Stokes equations with density dependent viscosities in bounded domains, J. Math. Pures Appl., 87, 227, 10.1016/j.matpur.2006.10.010 Mellet, 2007, On the barotropic compressible Navier–Stokes equations, Comm. Partial Differential Equations, 32, 431, 10.1080/03605300600857079 Li, 2008, Vanishing of vacuum states and blow-up phenomena of the compressible Navier–Stokes equations, Comm. Math. Phys., 281, 401, 10.1007/s00220-008-0495-4 Sun, 2008, Global weak solution to compressible Navier–Stokes equations with density-dependent viscosity, vacuum and gravitational force, Ann. Differential Equations, 24, 34