Classes de Hirzebruch et classes de Chern motiviques

Comptes Rendus Mathematique - Tập 342 - Trang 325-328 - 2006
Jean-Paul Brasselet1, Jörg Schürmann2, Shoji Yokura3
1IML, case 907, Luminy, 13288 Marseille cedex 9, France
2Westf. Wilhelms-Universität, SFB 478 “Geometrische Strukturen in der Mathematik”, Hittorfstr. 27, 48149 Münster, Allemagne
3Department of Mathematics and Computer Science, Faculty of Science, University of Kagoshima, 21-35 Korimoto 1-chome, Kagoshima 890-0065, Japon

Tài liệu tham khảo

Baum, 1975, Riemann–Roch for singular varieties, Publ. Math. IHES, 45, 101, 10.1007/BF02684299 Bittner, 2004, The universal Euler–Poincaré characteristic for varieties of characteristic zero, Comp. Math., 140, 1011, 10.1112/S0010437X03000617 Brasselet Cappell, 1991, Stratifiable maps and topological invariants, J. Amer. Math. Soc., 4, 521, 10.1090/S0894-0347-1991-1102578-4 Du Bois, 1981, Complexe de de Rham filtré d'une variété singulière, Bull. Soc. Math. France, 109, 41, 10.24033/bsmf.1932 Fulton, 1985 Hirzebruch, 1966 MacPherson, 1974, Chern classes for singular algebraic varieties, Ann. of Math., 100, 423, 10.2307/1971080 Yokura, 1995, On Cappell–Shaneson's homology L-class of singular algebraic varieties, Trans. Amer. Math. Soc., 347, 1005, 10.2307/2154884 Yokura, 1994, A generalized Grothendieck–Riemann–Roch theorem for Hirzebruch's χy-characteristic and Ty-characteristic, Publ. RIMS, 30, 603, 10.2977/prims/1195165791