Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Các yếu tố phiên mã NAC CcNAC1 và CcNAC2 từ Citrullus colocynthis tham gia vào tín hiệu ánh sáng và auxin
Tóm tắt
Hai yếu tố phiên mã NAC mới từ Citrullus colocynthis được suy diễn liên quan đến con đường tín hiệu ánh sáng và auxin. Các yếu tố phiên mã NAC (NAM, ATAF1, 2, CUC2) có nhiều chức năng trong sự phát triển và tăng trưởng của cây trồng. Hai yếu tố NAC, CcNAC1 và CcNAC2, đã được xác định gần đây trong loài bầu bí có khả năng chịu hạn cực tốt, Citrullus colocynthis. Nghiên cứu này xem xét vai trò chức năng của các gen này dưới các loại ánh sáng khác nhau dựa trên phân tích in silico các promoter của CcNAC1 và CcNAC2 cho thấy sự hiện diện của nhiều motif liên quan đến ánh sáng. Tác động của ánh sáng và auxin đến biểu hiện của CcNAC1 và CcNAC2 được xem xét trên lá của C. colocynthis, và thông qua các dòng báo cáo (pCcNAC1, 2::GUS) trong Arabidopsis. Hơn nữa, tác động của việc biểu hiện quá mức liên tục (OE-CcNAC1, 2) trong Arabidopsis cũng được xem xét dưới nhiều điều kiện khác nhau để xác nhận mối liên kết giữa các dòng báo cáo. Các điều trị ánh sáng trắng, xanh, đỏ và đỏ xa đã mang lại các mô hình thay đổi định lượng tương tự trong biểu hiện của CcNAC1 và CcNAC2 ở cả hai loài, với sự gia tăng bản sao cao nhất theo sau ánh sáng đỏ. Những thay đổi quang hình (photomorphogenesis) trong giò cây Arabidopsis có liên quan đến mức độ bản sao của gene. Trong điều kiện không có ánh sáng, các giò cây của các dòng OE-CcNAC1/CcNAC2 dài hơn đáng kể so với WT. Việc bổ sung auxin ngoại sinh (+IAA) vào môi trường phát triển cũng dẫn đến sự thay đổi chiều dài giò cây của các dòng biểu hiện quá mức và các thay đổi không gian-thời gian của các dòng báo cáo trong cây con. Dữ liệu của chúng tôi gợi ý rằng CcNAC1, 2 có thể có vai trò chức năng quan trọng trong con đường tín hiệu ánh sáng, và có vẻ như liên quan đến hormone auxin. Đây là nghiên cứu đầu tiên chỉ ra rằng các gen NAC có thể đóng vai trò trong cả con đường tín hiệu ánh sáng và auxin.
Từ khóa
#CcNAC1 #CcNAC2 #NAC transcription factors #Citrullus colocynthis #light signaling #auxin signalingTài liệu tham khảo
Altamura MM, Archilletti T, Capone I, Costantino P (1991) Histological analysis of the expression of Agrobacterium rhizogenes rolB-GUS gene fusions in transgenic tobacco. New Phytol 118:69–78
Ang LH, Chattopadhyay S, Wei N, Oyama T, Okada K, Batschauer A, Deng XW (1998) Molecular interactions between COP1 and HY5 defines a regulatory switch for light control of Arabidopsis development. Mol Cell 1:213–222
Argüello-Astorga CR, Herrera-Estrella LR (1996) Ancestral multipartite units in light-responsive plant promoters have structural features correlating with specific phototransduction pathways. Plant Physiol 112:1151–1166
Bhatia S, Gangappa SN, Kuswaha R, Kundu S, Chattopadhyay S (2008) SHORT HYPOCOTYL IN WHITE LIGHT1 SHW1, a serine-arginine-aspartate-rich protein in Arabidopsis, acts as a negative regulator of photomorphogenic growth. Plant Physiol 147:169–178
Briggs WR, Huala E (1999) Blue-light photoreceptors in higher plants. Annu Rev Cell Dev Biol 15:33–62
Castelian M, Le Hir R, Bellini C (2012) The non-DNA-binding bHLH transcription factor PRE3/bHLH135/ATBS1/TMO7 is involved in the regulation of light signaling pathway in Arabidopsis. Physiol Plant 145:450–460
Chae K, Isaacs CG, Reeves PH, Maloney G, Muday GK, Nagpal P, Reed JW (2012) Arabidopsis SMALL AUXIN UP RNA63 promotes hypocotyl and stamen filament elongation. Plant J 71:684–697
Chan CS, Guo L, Shih MC (2001) Promoter analysis of the nuclear gene encoding the chloroplast glyceraldehyde-3-phosphate dehydrogenase B subunit of Arabidopsis thaliana. Plant Mol Biol 46:131–141
Chatterjee M, Banerjee AK, Hannapel DJ (2007) A BELL1-Like gene of potato is light activated and wound inducible. Plant Physiol 145:1435–1443
Chattopadhyay S, Ang LH, Puente P, Deng XW, Wei N (1998) Arabidopsis bZIP protein HY5 directly interacts with light-responsive promoters in mediating light control of gene expression. Plant Cell 10:673–683
Chen M, Chory J, Fankhauser C (2004) Light signal transduction in higher plants. Annu Rev Genet 38:87–117
Cho JN, Ryu JY, Jeong YM, Park J, Song JJ, Amasino RM, Noh B, Noh YS (2012) Control of seed germination by light-induced histone arginine demethylation activity. Dev Cell 22:736–748
Clough SJ, Bent AF (1998) Floral dip, a simplified method from agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743
Cluis CP, Mouchel CF, Hardtke CS (2004) The Arabidopsis transcription factor HY5 integrates light and hormone signaling pathways. Plant J 38:332–347
Colón-Carmona A, Chen DL, Yeh K-C, Abel S (2000) Aux/IAA proteins are phosphorylated by phytochrome in vitro. Plant Physiol 124:1728–1738
Dehesh K, Bruce WB, Quail PH (1990) A trans-acting factor that binds to a GF-motif in the phytochrome gene promoter. Science 250:1397–1399
Donald RGK, Cashmore AR (1990) Mutation in either G box or I box sequences profoundly affects expression from the Arabidopsis thaliana rbcs-1 A promoter. EMBO J 9:17–26
Feldbrugge M, Sprenger M, Dinkelbach M, Yazaki K, Harter K, Weisshaar B (1994) Functional analysis of a light-responsive plant bZIP transcriptional regulator. Plant Cell 6:1607–1621
Folta FM, Koss LL, McMorrow R, Kim HH, Kenitz D, Wheeler R, Sager JC (2005) Design and fabrication of adjustable red-green-blue LED light arrays for plant research. BMC Plant Biol 5:17–28
Gangappa SN, Maurya JP, Yadav V, Chattopadhyay S (2013) The regulation of the Z- and G-box containing promoters by light signaling components, SPA1 and MYC2, in Arabidopsis. PLoS One 8:e62194
Genoud T, Buchala AJ, Chua NH, Métraux JP (2002) Phytochrome signaling modulates the SA-perceptive pathway in Arabidopsis. Plant J 31:87–95
He XJ, Mu RL, Cao WH, Zhang ZG, Zhang JS, Chen SY (2005) AtNAC2, a transcription factor downstream of ethylene and auxin signaling pathways, is involved in salt stress response and lateral root development. Plant J 44:903–916
Ibarra SE, Auge G, Sánchez RA, Botto JF (2013) Transcriptional programs related to phytochrome A function in Arabidopsis seed germination. Mol Plant 6:1261–1273
Inoue S, Kinoshita T, Takemiya A, Doi M, Shimazaki K (2008) Leaf positioning of Arabidopsis in responses to blue light. Mol Plant 1:15–26
Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusion, β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907
Jia KP, Luo Q, He SB, Lue XD, Yang HQ (2013) Strigolactone-regulated hypocotyl elongation is dependent on cryptochrome and phytochrome signaling pathways in Arabidopsis. Mol Plant. doi:10.1093/mp/sst093
Kanyuka K, Praekelt U, Franklin KA, Billingham OE, Hooley R, Whitelam GC, Halliday KJ (2003) Mutations in the huge Arabidopsis gene BIG affect a range of hormone and light responses. Plant J 35:57–70
Kaplan-Levy RN, Brewer PB, Quon T, Smyth DR (2011) The trihelix family of transcription factors-light, stress and development. Trends Plant Sci 17:163–171
Kim BC, Soh MS, Hong SH, Furuya M, Nam HG (1998) Photomorphogenic development of the Arabidopsis shy2-1D mutation and its interaction with phytochromes in darkness. Plant J 15:61–68
Kimura M, Yamamoto YY, Seki M, Sakarai T, Sato M, Abe T, Yoshida S, Manabe K, Shinozaki K, Matsui M (2003) Identification of Arabidopsis genes regulated by high light-stress using cDNA microarray. Photochem Photobiol Sci 77:226–233
Koornneef M, Rolff E, Spruit CIP (1980) Genetic control of light-inhibited hypocotyl elongation in Arabidopsis thaliana. Z Pflanzenphysiol 100:147–160
Kraepiel Y, Miginiac E (1997) Photomorphogenesis and phytohormones. Plant Cell Environ 20:807–812
Kuhn RM, Caspar T, Dehesh K, Quail PH (1993) DNA binding factor GT-2 from Arabidopsis. Plant Mol Biol 23:337–348
Kurepin LV, Walton LJ, Reid DM, Chinnappa C (2010) Light regulation of endogenous salicylic acid levels in hypocotyls of Helianthus annuus seedlings. Botany 88:668–674
Lau OS, Deng XW (2010) Plant hormone signaling lightens up, integrators of light and hormone. Curr Opin Plant Biol 13:571–577
Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouzé P, Rombauts S (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 1:325–327
Lin R, Wang H (2005) Two homologous ATP-Binging cassette transporter protein, AtMDR1 and AtPGP1, regulate Arabidopsis photomorphogenesis and root development by mediating polar auxin transport. Plant Physiol 138:949–964
Lin JF, Wu SH (2004) Molecular events in senescing Arabidopsis leaves. Plant J 39:612–628
Liu X, Cohen JD, Gardner G (2011) Low-fluence red light increases the transport and biosynthesis of auxin. Plant Physiol 157:891–904
Millenaar FF, van Zanten M, Cox MCH, Pierik R, Voesenek LACJ, Peeters AJM (2009) Differential petiole growth in Arabidopsis thaliana, photocontrol and hormonal regulation. New Phytol 184:141–152
Monte E, Al-Sady B, Leivar P, Quail PH (2007) Out of the dark, how the PIFs are unmasking a dual temporal mechanism of phytochrome signaling. J Exp Bot 58:3125–3133
Morishita T, Kojima Y, Maruta T, Nishizawa-Yokoi A, Yabuta Y, Shigeoka S (2009) Arabidopsis NAC transcription factor, ANAC078, regulates flavonoid biosynthesis under high light. Plant Cell Physiol 50:2210–2222
Nagpal P, Walker LM, Yong JC, Sonawala A, Timpte C, Estelle M, Reed JW (2000) AXR2 encodes a member of the Aux/IAA protein family. Plant Physiol 123:563–573
Nalbandi K, Kohnehrouz BB, Saeed KA, Gholizadeh A (2012) Isolating barley Hordeum vulgare L. B1 hordein gene promoter and using sequencing analysis for the identification of conserved regulatory elements by bioinformatics tools. Afr J Biotechnol 11:7378–7387
Nusinow DA, Helfer A, Hamilton EE, King JJ, Imaizumi T, Schultz TF, Farré EM, Kay SA (2011) The ELF4-ELF3-LUX complex links the circadian clock to diurnal control of hypocotyl growth. Nature 475:398–402
Olsen AN, Ernst HA, Leggio LL, Skriver K (2005) NAC transcription factors, structurally distinct, functionally diverse. Trends Plant Sci 10:79–87
Oyama T, Shimura Y, Okada K (1997) The Arabidopsis HY5 gene encodes a b ZIP protein that regulates stimulus-induced development of root and hypocotyl. Genes Dev 11:2983–2995
Park SC, Kwon HB, Shih MC (1996) Cis-acting elements essential for light regulation of the nuclear gene encoding the A subunit of chloroplast glyceraldehyde 3-phosphate dehydrogenase in Arabidopsis thaliana. Plant Physiol 112:1563–1571
Park J, Kim YS, Kim SG, Jung JH, Woo JC, Park CM (2011) Integration of auxin and salt signals by the NAC transcription factor NTM2 during seed germination in Arabidopsis. Plant Physiol 156:537–549
Parks BM (2003) The red side of photomorphogenesis. Plant Physiol 33:1437–1444
Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT–PCR. NAR 29:e45
Poppenberger B, Fujioka S, Soeno K, Soeno K, George GL, Vaistij FE, Hiranuma S, Seto H, Takatsuto S, Adam G, Yoshida S, Bowles D (2005) The UGT73C5 of Arabidopsis thaliana glucosylates brassinosteroids. PNAS 102:15253–15258
Rajendra V, Prasad B, Kumar SV, Nandi A, Chattopadhyay S (2012) Functional interconnections of HY1 with MYC2 and HY5 in Arabidopsis seedling development. BMC Plant Biol 12:37–50
Rizzini L, Favory J-J, Cloix C, Faggionato D, O’Hara A, Kaiserli E, Baumeister R, Schäfer E, Nagy F, Jenkins GI, Ulm R (2011) Perception of UV-B by the Arabidopsis UVR8 Protein. Science 332:103–106
Romano CP, Robson PR, Smith H, Estelle M, Klee H (1995) Transgene-mediated auxin overproduction in Arabidopsis: hypocotyl elongation phenotype and interactions with the hy6-1 hypocotyl elongation and axr1 auxin-resistant mutants. Plant Mol Biol 27:1071–1083
Safrany J, Haasz V, Mate Z, Ciolfi A, Feher B, Oravecz A, Stec A, Dallmann G, Morelli G, Ulm R, Nagy F (2008) Identification of a novel cis-regulatory element for UV-B-induced transcription in Arabidopsis. Plant J 54:402–414
Saito K, Watahiki MK, Yamamoto KT (2007) Differential expression of the auxin primary response gene MASSUGU2/IAA19 during tropic responses of Arabidopsis hypocotyls. Physiol Plant 130:148–156
Shikata H, Shibata M, Ushijima T, Nakashima M, Kong SG, Matsuoka K, Lin C, Matsushita T (2012) The RS domain of Arabidopsis splicing factor RRC1 is required for phytochrome B signal transduction. Plant J 70:727–738
Smirnova OG, Stepanenko IL, Shumny VK (2012) Mechanism of action and activity regulation of COP1, a constitutive repressor of photomorphogenesis. Russ J Plant Physl 59:155–166
Song YH, Yoo CM, Hong AP, Kim SH, Jeong HJ, Shin SY, Kim HJ, Yun DJ, Lim CO, Bahk JD, Lee SY, Nagao RT, Key JL, Hong JC (2008) DNA-binding study identifies C-box and hybrid C/G-box or C/A-box motifs as high-affinity binding sites for STF1 and LONG HYPOCOTYL5 proteins. Plant Physiol 146:1862–1877
Sorce C, Picciarelli P, Calistri G, Lercari B, Ceccarelli N (2008) The involvement of indole-3-acetic acid in the control of stem elongation in dark- and light-grown pea Pisum sativum. seedlings. J Plant Physiol 165:482–489
Soy J, Leivar P, González-Schain N, Sentandreu M, Prat S, Quail PH, Monte E (2012) Phytochrome-imposed oscillations in PIF3 protein abundance regulate hypocotyl growth under diurnal light/dark conditions in Arabidopsis. Plant J 71:390–401
Sun J, Qi L, Li Y, Zhai Q, Li C (2013) PIF4 and PIF5 transcription factors link blue light and auxin to regulate the phototropic response in Arabidopsis. Plant Cell. doi:10.1105/tpc.113.112417
Terzaghi WB, Cashmore AR (1995) Light-regulated transcription. Annu Rev Plant Physiol Plant Mol Biol 46:445–474
Thanh T, Chi VTQ, Omar H, Abdullah MP, Napis S (2012) Sequence analysis and potentials of the native Rbcs promoter in the development of an alternative eukaryotic expression system using green microalga Ankistrodesmus convolutus. Int J Mol Sci 13:2676–2691
Tian Q, Reed J (2001) Molecular links between light and auxin signalling pathways. Plant Growth Regul 20:274–280
Ulm R, Baumann A, Oravecz A, Máté Z, Adám E, Oakeley EJ, Schäfer E, Nagy F (2004) Genome-wide analysis of gene expression reveals function of the bZIP transcription factor HY5 in the UV-B response of Arabidopsis. PNAS 101:1397–1402
Valdés AE, Rizzardi K, Johannnesson H, Para A, Sundås-larsson A, Landberg K (2012) Arabidopsis thaliana TERMINAL FLOWER2 is involved in light-controlled signaling during seedling photomorphogenesis. Plant, Cell Environ 5:1013–1025
Vanderbussche F, Pierik R, Millenaar FF, Voesenek LA, Van Der Straeten D (2005) Reaching out of the shade. Curr Opin Plant Boil 8:462–468
Viret JF, Mabrouk Y, Bogorad L (1994) Transcriptional photoregulation of celltype preferred expression of maize rbcSm3, 3′ and 5′ sequences are involved. PNAS 91:8577–8581
Wang Z, Dane F (2013) NAC (NAM/ATAF/CUC) transcription factors in different stresses and their signaling pathway. Acta Physiol Plant 35:1397–1408
Wang R, Hong G, Han B (2004) Transcript abundance of rml1, encoding a putative GT1-like factor in rice, is up-regulated by Magnaporthe grisea and down-regulated by light. Gene 324:105–115
Wang L, Li L, Xu L, Zhou J, Zhuang H, Gong X, Wang M, Samuel SMS, Zhuge Q (2013) Isolation and functional analysis of the poplar RbcS gene promoter. Plant Mol Biol Rep 13:120–127
Wang Z, Rashotte A, Moss AG, Dane F (2014) Two NAC transcription factors from Citrullus colocynthis, CcNAC1, CcNAC2 implicated in multiple stress response. Acta Physiol Plant 36:621–634
Wu G, Cameron JN, Ljung K, Spalding EP (2010) A role for ABCB19-mediated polar auxin transport in seedling photomorphogenesis mediated by cryptochrome1 and phytochrome B. Plant J 62:179–191
Xie Q, Frugis G, Colgan D, Chun NH (2000) Arabidopsis NAC1 transduces auxin signal downstream of TIR1 to promote lateral root development. Genes Dev 14:3024–3036
Yamada T, Tanaka Y, Sriprasertsak P, Kato H, Hashimoto T, Shimizu H, Shiraushi T (1992) Phenylalanine ammonia-lyase genes from Pisum sativum, structure, organ specific expression and regulation by funga1 elicitor and suppressor. Plant Cell Physiol 33:715–725
Zhang H, He H, Wang X, Wang X, Yang X, Li L, Deng XW (2011) Genome-wide mapping of the HY5-mediated gene networks in Arabidopsis that involve both transcriptional and post-transcriptional regulation. Plant J 65:346–358
Zhou DX (1999) Regulatory mechanism of plant gene transcription by GT-elements and GT-factors. Trends Plant Sci 4:201–214