Circumventing the zinc dendrites via contact-actuated aspectant growth
Tài liệu tham khảo
Xu, 2012, Energetic zinc ion chemistry: the rechargeable zinc ion battery, Angew. Chem. Int. Ed., 51, 933, 10.1002/anie.201106307
Fang, 2018, Recent advances in aqueous zinc-ion batteries, ACS Energy Lett., 3, 2480, 10.1021/acsenergylett.8b01426
Konarov, 2018, Present and future perspective on electrode materials for rechargeable zinc-ion batteries, ACS Energy Lett., 3, 2620, 10.1021/acsenergylett.8b01552
Zeng, 2019, Recent progress and perspectives on aqueous Zn-based rechargeable batteries with mild aqueous electrolytes, Energy Storage Mater., 20, 410, 10.1016/j.ensm.2019.04.022
Zhu, 2022, Rechargeable Batteries for Grid Scale Energy Storage, Chem. Rev., 122, 16610, 10.1021/acs.chemrev.2c00289
Yang, 2022, Zinc anode for mild aqueous zinc-ion batteries: challenges, strategies, and perspectives, Nano-Micro Lett., 14, 42, 10.1007/s40820-021-00782-5
Qin, 2022, Progress in interface structure and modification of zinc anode for aqueous batteries, Nano Energy, 98, 107333, 10.1016/j.nanoen.2022.107333
Blanc, 2020, Scientific challenges for the implementation of Zn-ion batteries, Joule, 4, 771, 10.1016/j.joule.2020.03.002
Yin, 2023, From anode to cell: synergistic protection strategies and perspectives for stabilized Zn metal in mild aqueous electrolytes, Energy Storage Mater., 54, 623, 10.1016/j.ensm.2022.11.006
Yang, 2019, Do zinc dendrites exist in neutral zinc batteries: a developed electrohealing strategy to in situ rescue in-service batteries, Adv. Mater., 31, 1903778, 10.1002/adma.201903778
Hao, 2020, Designing dendrite-free zinc anodes for advanced aqueous zinc batteries, Adv. Funct. Mater., 30, 2001263, 10.1002/adfm.202001263
Li, 2021, Interfacial engineering strategy for high-performance Zn metal anodes, Nano-Micro Lett., 14, 6, 10.1007/s40820-021-00764-7
Jiang, 2023, Recent progress and prospects on dendrite-free engineerings for aqueous zinc metal anodes, Energy Environ. Mater., 6, 10.1002/eem2.12410
Ruan, 2022, Design strategies for high-energy-density aqueous zinc batteries, Angew. Chem. Int. Ed., 61, 10.1002/anie.202200598
Zhang, 2020, Fundamentals and perspectives in developing zinc-ion battery electrolytes: a comprehensive review, Energy Environ. Sci., 13, 4625, 10.1039/D0EE02620D
Ming, 2022, Co-solvent electrolyte engineering for stable anode-free zinc metal batteries, J. Am. Chem. Soc., 144, 7160, 10.1021/jacs.1c12764
Zhao, 2019, Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase, Energy Environ. Sci., 12, 1938, 10.1039/C9EE00596J
Wang, 2023, Aminosilane molecular layer enables successive capture-diffusion-deposition of ions toward reversible zinc electrochemistry, ACS Nano, 17, 668, 10.1021/acsnano.2c09977
Guo, 2022, Large-scale integration of zinc metasilicate interface layer guiding well-regulated Zn deposition, Adv. Mater., 34, 2202188, 10.1002/adma.202202188
Wang, 2022, Demonstrating U-shaped zinc deposition with 2D metal-organic framework nanoarrays for dendrite-free zinc batteries, Energy Storage Mater., 50, 641, 10.1016/j.ensm.2022.06.005
Wu, 2021, Regulating Zn deposition via an artificial solid–electrolyte interface with aligned dipoles for long life Zn anode, Nano-Micro Lett., 13, 79, 10.1007/s40820-021-00599-2
Cai, 2020, Chemically resistant Cu–Zn/Zn composite anode for long cycling aqueous batteries, Energy Storage Mater., 27, 205, 10.1016/j.ensm.2020.01.032
Gao, 2023, When it’s heavier: interfacial and solvation chemistry of isotopes in aqueous electrolytes for Zn-ion batteries, Angew. Chem. Int. Ed., 62
Wang, 2018, Highly reversible zinc metal anode for aqueous batteries, Nat. Mater., 17, 543, 10.1038/s41563-018-0063-z
Zhu, 2021, Concentrated dual-cation electrolyte strategy for aqueous zinc-ion batteries, Energy Environ. Sci., 14, 4463, 10.1039/D1EE01472B
Zhang, 2018, A ZnCl2 water-in-salt electrolyte for a reversible Zn metal anode, Chem. Commun., 54, 14097, 10.1039/C8CC07730D
Li, 2022, Highly reversible Zn anode with a practical areal capacity enabled by a sustainable electrolyte and superacid interfacial chemistry, Joule, 6, 1103, 10.1016/j.joule.2022.04.017
Mitha, 2018, Surface adsorption of polyethylene glycol to suppress dendrite formation on zinc anodes in rechargeable aqueous batteries, ChemElectroChem, 5, 2409, 10.1002/celc.201800572
Xiao, 2022, Enabling high-rate and high-areal-capacity Zn deposition via an interfacial preferentially adsorbed molecular layer, ACS Energy Lett., 8, 31, 10.1021/acsenergylett.2c02339
Dai, 2023, Reversible Zn metal anodes enabled by trace amounts of underpotential deposition initiators, Angew. Chem. Int. Ed., 62, 10.1002/anie.202301192
Zhang, 2023, Highly reversible zinc metal anode in a dilute aqueous electrolyte enabled by a pH buffer additive, Angew. Chem. Int. Ed., 62
Cao, 2020, Solvation structure design for aqueous Zn metal batteries, J. Am. Chem. Soc., 142, 21404, 10.1021/jacs.0c09794
Hou, 2020, Tailoring desolvation kinetics enables stable zinc metal anodes, J. Mater. Chem. A, 8, 19367, 10.1039/D0TA06622B
Qin, 2021, Tuning Zn2+ coordination environment to suppress dendrite formation for high-performance Zn-ion batteries, Nano Energy, 80, 105478, 10.1016/j.nanoen.2020.105478
Wang, 2019, A metal-organic framework host for highly reversible dendrite-free zinc metal anodes, Joule, 3, 1289, 10.1016/j.joule.2019.02.012
Zhang, 2021, 3D-printed multi-channel metal lattices enabling localized electric-field redistribution for dendrite-free aqueous Zn ion batteries, Adv. Energy Mater., 11, 2003927, 10.1002/aenm.202003927
Zhou, 2022, Encapsulation of metallic Zn in a hybrid MXene/graphene aerogel as a stable Zn anode for foldable Zn-ion batteries, Adv. Mater., 34, 2106897, 10.1002/adma.202106897
Kang, 2018, Nanoporous CaCO3 coatings enabled uniform Zn stripping/plating for long-life zinc rechargeable aqueous batteries, Adv. Energy Mater., 8, 1801090, 10.1002/aenm.201801090
Xiao, 2022, An anticorrosive zinc metal anode with ultra-long cycle life over one year, Energy Environ. Sci., 15, 1638, 10.1039/D1EE03882F
Zhao, 2021, Horizontally arranged zinc platelet electrodeposits modulated by fluorinated covalent organic framework film for high-rate and durable aqueous zinc ion batteries, Nat. Commun., 12, 6606, 10.1038/s41467-021-26947-9
Ouyang, 2022, A new insight into ultrastable Zn metal batteries enabled by in situ built multifunctional metallic interphase, Adv. Funct. Mater., 32, 2109749, 10.1002/adfm.202109749
Yin, 2022, Regulating the redox reversibility of zinc anode toward stable aqueous zinc batteries, Nano Energy, 99, 107331, 10.1016/j.nanoen.2022.107331
Zhang, 2023, Solid-electrolyte interphase chemistries towards high-performance aqueous zinc metal batteries, Angew. Chem. Int. Ed., 62
Liu, 2017, Making Li-metal electrodes rechargeable by controlling the dendrite growth direction, Nat. Energy, 2, 17083, 10.1038/nenergy.2017.83
Zou, 2018, Directing lateral growth of lithium dendrites in micro-compartmented anode arrays for safe lithium metal batteries, Nat. Commun., 9, 464, 10.1038/s41467-018-02888-8
Mao, 2021, Current-density regulating lithium metal directional deposition for long cycle-life Li metal batteries, Angew. Chem. Int. Ed., 60, 19306, 10.1002/anie.202105831
Hou, 2021, Realizing high-power and high-capacity zinc/sodium metal anodes through interfacial chemistry regulation, Nat. Commun., 12, 3083, 10.1038/s41467-021-23352-0
Wang, 2021, A universal aqueous conductive binder for flexible electrodes, Adv. Funct. Mater., 31, 2102284, 10.1002/adfm.202102284
Hao, 2020, An in-depth study of Zn metal surface chemistry for advanced aqueous Zn-ion batteries, Adv. Mater., 32, 2003021, 10.1002/adma.202003021
Yang, 2020, Dendrites in Zn-based batteries, Adv. Mater., 32, 2001854, 10.1002/adma.202001854
Li, 2022, Soft Shorts” hidden in zinc metal anode research, Joule, 6, 273, 10.1016/j.joule.2021.12.009
Fu, 2022, A high strength, anti-corrosion and sustainable separator for aqueous zinc-based battery by natural bamboo cellulose, Energy Storage Mater., 48, 191, 10.1016/j.ensm.2022.02.052
Pan, 2016, Reversible aqueous zinc/manganese oxide energy storage from conversion reactions, Nat. Energy, 1, 16039, 10.1038/nenergy.2016.39