Circulatory metabolites trigger ex vivo arterial endothelial cell dysfunction in population chronically exposed to diesel exhaust

Springer Science and Business Media LLC - Tập 19 - Trang 1-14 - 2022
Wenting Cheng1, Huanhuan Pang2, Matthew J. Campen3, Jianzhong Zhang1, Yanting Li1, Jinling Gao1, Dunqiang Ren4, Xiaoya Ji1, Nathaniel Rothman5, Qing Lan5, Yuxin Zheng1, Shuguang Leng6,7, Zeping Hu2, Jinglong Tang1
1Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, China
2School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
3Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, USA
4Department of Respiratory Medicine, Affiliated Hospital of Medical College of Qingdao University, Qingdao University, Qingdao, China
5Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, USA
6Department of Internal Medicine, School of Medicine, University of New Mexico, Albuquerque, USA
7Cancer Control and Population Sciences, University of New Mexico Comprehensive Cancer Center, Albuquerque, USA

Tóm tắt

Chronic exposure to diesel exhaust has a causal link to cardiovascular diseases in various environmental and occupational settings. Arterial endothelial cell function plays an important role in ensuring proper maintenance of cardiovascular homeostasis and the endothelial cell dysfunction by circulatory inflammation is a hallmark in cardiovascular diseases. Acute exposure to diesel exhaust in controlled exposure studies leads to artery endothelial cells dysfunction in previous study, however the effect of chronic exposure remains unknown. We applied an ex vivo endothelial biosensor assay for serum samples from 133 diesel engine testers (DETs) and 126 non-DETs with the aim of identifying evidence of increased risk for cardiovascular diseases. Environmental monitoring suggested that DETs were exposed to high levels of diesel exhaust aerosol (282.3 μg/m3 PM2.5 and 135.2 μg/m3 elemental carbon). Surprisingly, chronic diesel exhaust exposure was associated with a pro-inflammatory phenotype in the ex vivo endothelial cell model, in a dose-dependent manner with CCL5 and VCAM as most affected genes. This dysfunction was not mediated by reduction in circulatory pro-inflammatory factors but significantly associated with a reduction in circulatory metabolites cGMP and an increase in primary DNA damage in leucocyte in a dose-dependent manner, which also explained a large magnitude of association between diesel exhaust exposure and ex vivo endothelial biosensor response. Exogenous cGMP addition experiment further confirmed the induction of ex vivo biosensor gene expressions in endothelial cells treated with physiologically relevant levels of metabolites cGMP. Serum-borne bioactivity caused the arterial endothelial cell dysfunction may attribute to the circulatory metabolites based on the ex vivo biosensor assay. The reduced cGMP and increased polycyclic aromatic hydrocarbons metabolites-induced cyto/geno-toxic play important role in the endothelial cell dysfunction of workers chronic exposure to diesel exhaust.

Tài liệu tham khảo

Benbrahim-Tallaa L, Baan RA, Grosse Y, Lauby-Secretan B, El Ghissassi F, Bouvard V, et al. Carcinogenicity of diesel-engine and gasoline-engine exhausts and some nitroarenes. Lancet Oncol. 2012;13(7):663–4. https://doi.org/10.1016/s1470-2045(12)70280-2. Eastwood P. Particulate emissions from vehicles. New York: Wiley; 2008. U.S. EPA. Health assessment document for diesel engine exhaust. Prepared by the National Center for Environmental Assessment, Washington, DC, for the Office of Transportation and Air Quality. 2002:EPA/600/8-90/057F. Breton CV, Salam MT, Wang X, Byun H-M, Siegmund KD, Gilliland FD. Particulate matter, DNA methylation in nitric oxide synthase, and childhood respiratory disease. Environ Health Perspect. 2012;120(9):1320–6. https://doi.org/10.1289/ehp.1104439. Ristovski ZD, Miljevic B, Surawski NC, Morawska L, Fong KM, Goh F, et al. Respiratory health effects of diesel particulate matter. Respirology. 2012;17(2):201–12. https://doi.org/10.1111/j.1440-1843.2011.02109.x. Steiner S, Bisig C, Petri-Fink A, Rothen-Rutishauser B. Diesel exhaust: current knowledge of adverse effects and underlying cellular mechanisms. Arch Toxicol. 2016;90(7):1541–53. https://doi.org/10.1007/s00204-016-1736-5. Costello S, Attfield MD, Lubin JH, Neophytou AM, Blair A, Brown DM, et al. Ischemic heart disease mortality and diesel exhaust and respirable dust exposure in the diesel exhaust in miners study. Am J Epidemiol. 2018;187(12):2623–32. https://doi.org/10.1093/aje/kwy182. Brook RD, Rajagopalan S, Pope CA III, Brook JR, Bhatnagar A, Diez-Roux AV, et al. Particulate matter air pollution and cardiovascular disease an update to the scientific statement from the American Heart Association. Circulation. 2010;121(21):2331–78. https://doi.org/10.1161/CIR.0b013e3181dbece1. Zhang J, DeFelice AF, Hanig JP, Colatsky T. Biomarkers of endothelial cell activation serve as potential surrogate markers for drug-induced vascular injury. Toxicol Pathol. 2010;38(6):856–71. https://doi.org/10.1177/0192623310378866. Collins T, Read MA, Neish AS, Whitley MZ, Thanos D, Maniatis T. Transcriptional regulation of endothelial cell adhesion molecules: NF-κB and cytokine-inducible enhancers. FASEB J. 1995;9(10):899–909. Hisano N, Yatomi Y, Satoh K, Akimoto S, Mitsumata M, Fujino MA, et al. Induction and suppression of endothelial cell apoptosis by sphingolipids: a possible in vitro model for cell-cell interactions between platelets and endothelial cells. Blood. 1999;93(12):4293–9. https://doi.org/10.1182/blood.V93.12.4293.412k26_4293_4299. Cung H, Aragon MJ, Zychowski K, Anderson JR, Nawarskas J, Roldan C, et al. Characterization of a novel endothelial biosensor assay reveals increased cumulative serum inflammatory potential in stabilized coronary artery disease patients. J Transl Med. 2015;13:99. https://doi.org/10.1186/s12967-015-0457-5. Zychowski KE, Sanchez B, Pedrosa RP, Lorenzi-Filho G, Drager LF, Polotsky VY, et al. Serum from obstructive sleep apnea patients induces inflammatory responses in coronary artery endothelial cells. Atherosclerosis. 2016;254:59–66. https://doi.org/10.1016/j.atherosclerosis.2016.09.017. Agarwal B, Campen MJ, Channell MM, Wherry SJ, Varamini B, Davis JG, et al. Resveratrol for primary prevention of atherosclerosis: Clinical trial evidence for improved gene expression in vascular endothelium. Int J Cardiol. 2013;166(1):246–8. https://doi.org/10.1016/j.ijcard.2012.09.027. Channell MM, Paffett ML, Devlin RB, Madden MC, Campen MJ. Circulating factors induce coronary endothelial cell activation following exposure to inhaled diesel exhaust and nitrogen dioxide in humans: evidence from a novel translational In vitro model. Toxicol Sci. 2012;127(1):179–86. https://doi.org/10.1093/toxsci/kfs084. Harmon ME, Lewis J, Miller C, Hoover J, Ali A-MS, Shuey C, et al. Residential proximity to abandoned uranium mines and serum inflammatory potential in chronically exposed Navajo communities. J Expo Sci Environ Epid. 2017;27(4):365–71. https://doi.org/10.1038/jes.2016.79. Tang J, Cheng W, Gao J, Li Y, Yao R, Rothman N, et al. Occupational exposure to carbon black nanoparticles increases inflammatory vascular disease risk: an implication of an ex vivo biosensor assay. Part Fibre Toxicol. 2020;17(1):47. https://doi.org/10.1186/s12989-020-00378-8. Dai Y, Zhang X, Zhang R, Zhao X, Duan H, Niu Y, et al. Long-term exposure to diesel engine exhaust affects cytokine expression among occupational population. Toxicol Res. 2016;5(2):674–81. https://doi.org/10.1039/c5tx00462d. Niu Y, Zhang X, Meng T, Wang H, Bin P, Shen M, et al. Exposure characterization and estimation of benchmark dose for cancer biomarkers in an occupational cohort of diesel engine testers. J Expo Sci Environ Epid. 2018;28(6):579–88. https://doi.org/10.1038/s41370-018-0061-x. Wang H, Duan H, Meng T, Yang M, Cui L, Bin P, et al. Local and systemic inflammation may mediate diesel engine exhaust-induced lung function impairment in a Chinese occupational cohort. Toxicol Sci. 2018;162(2):372–82. https://doi.org/10.1093/toxsci/kfx259. Zhang X, Duan H, Gao F, Li Y, Huang C, Niu Y, et al. Increased micronucleus, nucleoplasmic bridge, and nuclear bud frequencies in the peripheral blood lymphocytes of diesel engine exhaust-exposed workers. Toxicol Sci. 2015;143(2):408–17. https://doi.org/10.1093/toxsci/kfu239. Cheng W, Liu Y, Tang J, Duan H, Wei X, Zhang X, et al. Carbon content in airway macrophages and genomic instability in Chinese carbon black packers. Arch Toxicol. 2020;94(3):761–71. https://doi.org/10.1007/s00204-020-02678-6. Duan H, Jia X, Zhai Q, Ma L, Wang S, Huang C, et al. Long-term exposure to diesel engine exhaust induces primary DNA damage: a population-based study. Occup Environ Med. 2016;73(2):83–90. https://doi.org/10.1136/oemed-2015-102919. Duan H, Leng S, Pan Z, Dai Y, Niu Y, Huang C, et al. Biomarkers measured by cytokinesis-block micronucleus cytome assay for evaluating genetic damages induced by polycyclic aromatic hydrocarbons. Mutat Res. 2009;677(1–2):93–9. https://doi.org/10.1016/j.mrgentox.2009.06.002. Shen M, Bin P, Li H, Zhang X, Sun X, Duan H, et al. Increased levels of etheno-DNA adducts and genotoxicity biomarkers of long-term exposure to pure diesel engine exhaust. Sci Total Environ. 2016;543:267–73. https://doi.org/10.1016/j.scitotenv.2015.10.165. Bautista-Nino PK, Portilla-Fernandez E, Vaughan DE, Danser AHJ, Roks AJM. DNA damage: a main determinant of vascular aging. Int J Mol Sci. 2016;17(5):748. https://doi.org/10.3390/ijms17050748. Sicinska P, Mokra K, Wozniak K, Michalowicz J, Bukowska B. Genotoxic risk assessment and mechanism of DNA damage induced by phthalates and their metabolites in human peripheral blood mononuclear cells. Sci Rep. 2021;11(1):1658. https://doi.org/10.1038/s41598-020-79932-5. Sun H-J, Wu Z-Y, Nie X-W, Bian J-S. Role of endothelial dysfunction in cardiovascular diseases: the link between inflammation and hydrogen sulfide. Front Pharmacol. 2020;10:1568. https://doi.org/10.3389/fphar.2019.01568. Davignon J, Ganz P. Role of endothelial dysfunction in atherosclerosis. Circulation. 2004;109(23):27–32. https://doi.org/10.1161/01.CIR.0000131515.03336.f8. Dai Y, Ren D, Bassig BA, Vermeulen R, Hu W, Niu Y, et al. Occupational exposure to diesel engine exhaust and serum cytokine levels. Environ Molr Mutagen. 2018;59(2):144–50. https://doi.org/10.1002/em.22142. Dai Y, Niu Y, Duan H, Bassig BA, Ye M, Zhang X, et al. Effects of occupational exposure to carbon black on peripheral white blood cell counts and lymphocyte subsets. Environ Molr Mutagen. 2016;57(8):615–22. https://doi.org/10.1002/em.22036. Long CM, Nascarella MA, Valberg PA. Carbon black vs. black carbon and other airborne materials containing elemental carbon: physical and chemical distinctions. Environ Pollut. 2013;181:271–86. https://doi.org/10.1016/j.envpol.2013.06.009. ICBA. Carbon Black User's Guide-Safety, Health, & Environmental Information. International Carbon Black Association. 2016. Mudau M, Genis A, Lochner A, Strijdom H. Endothelial dysfunction: the early predictor of atherosclerosis. Cardiovasc J Afr. 2012;23(4):222–31. https://doi.org/10.5830/cvja-2011-068. Chu P-C, Wu C, Su T-C. Association between urinary phthalate metabolites and markers of endothelial dysfunction in adolescents and young adults. Toxics. 2021;9(2):33. https://doi.org/10.3390/toxics9020033. Zhang X, Xiao X, Duan H, Gao F, Li Y, Niu Y, et al. Cytotoxicity of diesel engine exhaust among the Chinese occupational population: a complement of cytokinesis-block micronucleus cytome. Inhal Toxicol. 2016;28(6):274–80. https://doi.org/10.3109/08958378.2016.1162233. Grimmer G, Brune H, Deutsch-Wenzel R, Dettbarn G, Jacob J, Naujack KW, et al. Contribution of polycyclic aromatic hydrocarbons and nitro-derivatives to the carcinogenic impact of diesel engine exhaust condensate evaluated by implantation into the lungs of rats. Cancer Lett. 1987;37(2):173–80. https://doi.org/10.1016/0304-3835(87)90160-1. Kovalski V, Prestes AP, Oliveira JG, Alves GF, Colarites DF, Mattos JE, et al. Protective role of cGMP in early sepsis. Eur J Pharmacol. 2017;807:174–81. https://doi.org/10.1016/j.ejphar.2017.05.012. Lo HC, Yang RB, Lee CH. Guanylyl cyclase-G modulates jejunal apoptosis and inflammation in mice with intestinal ischemia and reperfusion. PLoS ONE. 2014;9(7): e101314. https://doi.org/10.1371/journal.pone.0101314. Muraki Y, Naito T, Tohyama K, Shibata S, Kuniyeda K, Nio Y, et al. Improvement of pulmonary arterial hypertension, inflammatory response, and epithelium injury by dual activation of cAMP/cGMP pathway in a rat model of monocrotaline-induced pulmonary hypertension. Biosci Biotechnol Biochem. 2019;83(6):1000–10. https://doi.org/10.1080/09168451.2019.1584520. Lawal AO, Davids LM, Marnewick JL. Diesel exhaust particles and endothelial cells dysfunction: an update. Toxicol in Vitro. 2016;32:92–104. https://doi.org/10.1016/j.tiv.2015.12.015. Durik M, Kavousi M, van der Pluijm I, Isaacs A, Cheng C, Verdonk K, et al. Nucleotide excision DNA repair is associated with age-related vascular dysfunction. Circulation. 2012;126(4):468–78. https://doi.org/10.1161/circulationaha.112.104380. Rappaport JA, Waldman SA. The guanylate cyclase C-cGMP signaling axis opposes intestinal epithelial injury and neoplasia. Front Oncol. 2018;8:299. https://doi.org/10.3389/fonc.2018.00299. Mostovenko E, Young T, Muldoon PP, Bishop L, Canal CG, Vucetic A, et al. Nanoparticle exposure driven circulating bioactive peptidome causes systemic inflammation and vascular dysfunction. Part Fibre Toxicol. 2019;16(1):20. https://doi.org/10.1186/s12989-019-0304-6. Page AV, Liles WC. Biomarkers of endothelial activation/dysfunction in infectious diseases. Virulence. 2013;4(6):507–16. https://doi.org/10.4161/viru.24530. Wei Y, Wang Y, Di Q, Choirat C, Wang Y, Koutrakis P, et al. Short term exposure to fine particulate matter and hospital admission risks and costs in the Medicare population: time stratified, case crossover study. BMJ-British Medical Journal. 2019;367: l6258. https://doi.org/10.1136/bmj.l6258. Leng S, Picchi MA, Kang H, Wu G, Filipczak PT, Juri DE, et al. Dietary nutrient intake, ethnicity, and epigenetic silencing of lung cancer genes detected in sputum in new Mexican smokers. Cancer Prev Res. 2018;11(2):93–102. https://doi.org/10.1158/1940-6207.Capr-17-0196.