Circulating herpes simplex type 1 (HSV-1)-specific CD8+T cells do not access HSV-1 latently infected trigeminal ganglia
Tóm tắt
Therapeutic vaccines can be designed to enhance existing T cell memory populations for increased protection against re-infection. In the case of herpes simplex virus type 1, recurrent disease results from reactivation of latent virus in sensory ganglia, which is controlled in part by a ganglia-resident HSV-specific memory CD8+ T cell population. Thus, an important goal of a therapeutic HSV-1 vaccine would be to enhance this population. HSV-1-infected mice were treated with TAK-779 to block CCR5- and CXCR3-mediated CD8+ T cell migration during both acute and latent infections. Additionally, HSV-1-specific CD8+ T cells were transferred into HSV-1 latently infected mice to mimic the effect of a therapeutic vaccine, and their migration into trigeminal ganglia (TG) was traced during steady-state latency, or during recovery of the TG-resident memory CD8+ T cell population following stress-, and corticosterone-induced depletion and HSV-1 reactivation from latency. Bromodeoxy uridine (BrdU) incorporation measured cell proliferation in vivo. TAK-779 treatment during acute HSV-1 infection reduced the number of infiltrating CD8+ T cells but did not alter the number of viral genome copies. TAK-779 treatment during HSV latency did not affect the size of the TG-resident memory CD8+ T cell population. Transferred HSV-specific CD8+ T cells failed to access latently infected TG during steady-state latency, or during recovery of the TG resident HSV-specific CD8+ T cell population following exposure of latently infected mice to stress and corticosterone. Recovery of the HSV-specific CD8+ T cell population after stress and corticosterone treatment occurred with homeostatic levels of cell division and did not require CD4+ T cell help. Our findings are consistent with the notion that the CD8+ T cells in latently infected TG are a tissue-resident memory (Trm) population that is maintained without replenishment from the periphery, and that when this population is disrupted, it recovers without proliferation or detectable recruitment of HSV-specific CD8+ T cells from the blood. The compartmentalization of the HSV-specific CD8+ memory T cell population in latently infected TG will complicate the design of therapeutic vaccines.
Tài liệu tham khảo
Arduino PG, Porter SR: Herpes Simplex Virus Type 1 infection: overview on relevant clinico-pathological features. J Oral Pathol Med. 2008, 37 (2): 107-21. 10.1111/j.1600-0714.2007.00586.x.
Kaye SB, et al: Evidence for herpes simplex viral latency in the human cornea. Br J Ophthalmol. 1991, 75 (4): 195-200. 10.1136/bjo.75.4.195.
Dawson CR, Togni B: Herpes simplex eye infections: clinical manifestations, pathogenesis and management. Surv Ophthalmol. 1976, 21 (2): 121-35. 10.1016/0039-6257(76)90090-4.
Liesegang TJ, et al: Epidemiology of ocular herpes simplex. Incidence in Rochester, Minn, 1950 through 1982. Arch Ophthalmol. 1989, 107 (8): 1155-9.
Rowley AH, et al: Rapid detection of herpes-simplex-virus DNA in cerebrospinal fluid of patients with herpes simplex encephalitis. Lancet. 1990, 335 (8687): 440-1. 10.1016/0140-6736(90)90667-T.
Baringer JR, Swoveland P: Recovery of herpes-simplex virus from human trigeminal ganglions. N Engl J Med. 1973, 288 (13): 648-50. 10.1056/NEJM197303292881303.
Padgett DA, et al: Social stress and the reactivation of latent herpes simplex virus type 1. Proc Natl Acad Sci USA. 1998, 95 (12): 7231-5. 10.1073/pnas.95.12.7231.
Freeman ML, et al: Psychological stress compromises CD8+ T cell control of latent herpes simplex virus type 1 infections. J Immunol. 2007, 179 (1): 322-8.
Elftman MD, et al: Stress-induced glucocorticoids at the earliest stages of herpes simplex virus-1 infection suppress subsequent antiviral immunity, implicating impaired dendritic cell function. J Immunol. 2010, 184 (4): 1867-75. 10.4049/jimmunol.0902469.
Sheridan JF, et al: Restraint stress differentially affects anti-viral cellular and humoral immune responses in mice. Journal of Neuroimmunology. 1991, 31 (3): 245-255. 10.1016/0165-5728(91)90046-A.
Bonneau RH: Stress-Induced Effects on Integral Immune Components Involved in Herpes Simplex Virus (HSV)-Specific Memory Cytotoxic T Lymphocyte Activation. Brain, Behavior, and Immunity. 1996, 10 (2): 139-163. 10.1006/brbi.1996.0014.
Liu T, et al: CD8(+) T cells can block herpes simplex virus type 1 (HSV-1) reactivation from latency in sensory neurons. J Exp Med. 2000, 191 (9): 1459-66. 10.1084/jem.191.9.1459.
Liu T, et al: Gamma interferon can prevent herpes simplex virus type 1 reactivation from latency in sensory neurons. J Virol. 2001, 75 (22): 11178-84. 10.1128/JVI.75.22.11178-11184.2001.
Khanna KM, et al: Herpes simplex virus-specific memory CD8+ T cells are selectively activated and retained in latently infected sensory ganglia. Immunity. 2003, 18 (5): 593-603. 10.1016/S1074-7613(03)00112-2.
Khanna KM, et al: Immune control of herpes simplex virus during latency. Curr Opin Immunol. 2004, 16 (4): 463-9. 10.1016/j.coi.2004.05.003.
Wallace ME, et al: The cytotoxic T-cell response to herpes simplex virus type 1 infection of C57BL/6 mice is almost entirely directed against a single immunodominant determinant. J Virol. 1999, 73 (9): 7619-26.
Knickelbein JE, et al: Noncytotoxic lytic granule-mediated CD8+ T cell inhibition of HSV-1 reactivation from neuronal latency. Science. 2008, 322 (5899): 268-71. 10.1126/science.1164164.
Richards CM, et al: Protection against recurrent ocular herpes simplex virus type 1 disease after therapeutic vaccination of latently infected mice. J Virol. 2003, 77 (12): 6692-9. 10.1128/JVI.77.12.6692-6699.2003.
Bernstein DI, Stanberry LR: Herpes simplex virus vaccines. Vaccine. 1999, 17 (13-14): 1681-9. 10.1016/S0264-410X(98)00434-4.
Stanberry LR: Herpes simplex virus vaccines as immunotherapeutic agents. Trends Microbiol. 1995, 3 (6): 244-7. 10.1016/S0966-842X(00)88933-7.
Carr DJ, Wuest T, Ash J: An increase in herpes simplex virus type 1 in the anterior segment of the eye is linked to a deficiency in NK cell infiltration in mice deficient in CXCR3. J Interferon Cytokine Res. 2008, 28 (4): 245-51. 10.1089/jir.2007.0110.
Carr DJ, et al: Abnormal immune response of CCR5-deficient mice to ocular infection with herpes simplex virus type 1. J Gen Virol. 2006, 87 (Pt 3): 489-99. 10.1099/vir.0.81339-0.
Ajuebor MN, et al: CCR5 deficiency drives enhanced natural killer cell trafficking to and activation within the liver in murine T cell-mediated hepatitis. Am J Pathol. 2007, 170 (6): 1975-88. 10.2353/ajpath.2007.060690.
Lundberg P, et al: Effects of CXCR3 signaling on development of fatal encephalitis and corneal and periocular skin disease in HSV-infected mice are mouse-strain dependent. Invest Ophthalmol Vis Sci. 2007, 48 (9): 4162-70. 10.1167/iovs.07-0261.
Komatsu K, et al: Pathogenesis of herpetic stromal keratitis in CCR5- and/or CXCR3-deficient mice. Curr Eye Res. 2008, 33 (9): 736-49. 10.1080/02713680802344716.
Kodukula P, et al: Macrophage control of herpes simplex virus type 1 replication in the peripheral nervous system. J Immunol. 1999, 162 (5): 2895-905.
Nansen A, et al: The role of CC chemokine receptor 5 in antiviral immunity. Blood. 2002, 99 (4): 1237-45. 10.1182/blood.V99.4.1237.
Zhou Y, et al: Impaired macrophage function and enhanced T cell-dependent immune response in mice lacking CCR5, the mouse homologue of the major HIV-1 coreceptor. J Immunol. 1998, 160 (8): 4018-25.
Thapa M, Carr DJ: CXCR3 deficiency increases susceptibility to genital herpes simplex virus type 2 infection: Uncoupling of CD8+ T-cell effector function but not migration. J Virol. 2009, 83 (18): 9486-501. 10.1128/JVI.00854-09.
Wakim LM, et al: Cutting edge: Local recall responses by memory T cells newly recruited to peripheral nonlymphoid tissues. Journal of immunology (Baltimore, Md. 2008, 181 (9): 5837-41.
Wakim LM, Woodward-Davis A, Bevan MJ: Memory T cells persisting within the brain after local infection show functional adaptations to their tissue of residence. Proc Natl Acad Sci USA. 2010, 107 (42): 17872-9. 10.1073/pnas.1010201107.
Sheridan BS, et al: Latent virus influences the generation and maintenance of CD8+ T cell memory. J Immunol. 2006, 177 (12): 8356-64.
Gebhardt T, et al: Memory T cells in nonlymphoid tissue that provide enhanced local immunity during infection with herpes simplex virus. Nat Immunol. 2009, 10 (5): 524-30. 10.1038/ni.1718.
Lepisto AJ, et al: CD8 T cells mediate transient herpes stromal keratitis in CD4-deficient mice. Invest Ophthalmol Vis Sci. 2006, 47 (8): 3400-9. 10.1167/iovs.05-0898.
Gao P, et al: The unique target specificity of a nonpeptide chemokine receptor antagonist: selective blockade of two Th1 chemokine receptors CCR5 and CXCR3. J Leukoc Biol. 2003, 73 (2): 273-80. 10.1189/jlb.0602269.
Frank GM, et al: A novel p40-independent function of IL-12p35 is required for progression and maintenance of herpes stromal keratitis. Invest Ophthalmol Vis Sci. 51 (7): 3591-8. 10.1167/iovs.09-4368.
Belz GT, et al: Minimal activation of memory CD8+ T cell by tissue-derived dendritic cells favors the stimulation of naive CD8+ T cells. Nat Immunol. 2007, 8 (10): 1060-6. 10.1038/ni1505.
Baba M, et al: A small-molecule, nonpeptide CCR5 antagonist with highly potent and selective anti-HIV-1 activity. Proc Natl Acad Sci USA. 1999, 96 (10): 5698-703. 10.1073/pnas.96.10.5698.
Wakim LM, et al: Dendritic cell-induced memory T cell activation in nonlymphoid tissues. Science. 2008, 319 (5860): 198-202. 10.1126/science.1151869.
Hoshino Y, et al: Rates of reactivation of latent herpes simplex virus from mouse trigeminal ganglia ex vivo correlate directly with viral load and inversely with number of infiltrating CD8+ T cells. J Virol. 2007, 81 (15): 8157-64. 10.1128/JVI.00474-07.
Derfuss T, et al: The presence of lytic HSV-1 transcripts and clonally expanded T cells with a memory effector phenotype in human sensory ganglia. Ann N Y Acad Sci. 2009, 1164: 300-4. 10.1111/j.1749-6632.2009.03871.x.
Wickham S, et al: Chemokine receptor deficiency is associated with increased chemokine expression in the peripheral and central nervous systems and increased resistance to herpetic encephalitis. J Neuroimmunol. 2005, 162 (1-2): 51-9. 10.1016/j.jneuroim.2005.01.001.
Cook WJ, et al: Persistent expression of chemokine and chemokine receptor RNAs at primary and latent sites of herpes simplex virus 1 infection. Virol J. 2004, 1: 5-10.1186/1743-422X-1-5.
Wakim LM, Woodward-Davis A, Bevan MJ: Inaugural Article: Memory T cells persisting within the brain after local infection show functional adaptations to their tissue of residence. Proc Natl Acad Sci USA.
Tait AS, Butts CL, Sternberg EM: The role of glucocorticoids and progestins in inflammatory, autoimmune, and infectious disease. J Leukoc Biol. 2008, 84 (4): 924-31. 10.1189/jlb.0208104.
Frank GM, et al: Early CD4(+) T cell help prevents partial CD8(+) T cell exhaustion and promotes maintenance of Herpes Simplex Virus 1 latency. J Immunol. 184 (1): 277-86. 10.4049/jimmunol.0902373.