Circular analysis in systems neuroscience: the dangers of double dipping

Nature Neuroscience - Tập 12 Số 5 - Trang 535-540 - 2009
Nikolaus Kriegeskorte1, W. Kyle Simmons1, Patrick S.F. Bellgowan1, Chris I. Baker1
1Laboratory of Brain and Cognition, US National Institute of Mental Health, Bethesda, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Baker, C.I., Hutchison, T.L. & Kanwisher, N. Does the fusiform face area contain subregions highly selective for nonfaces? Nat. Neurosci. 10, 3–4 (2007).

Simmons, W.K. et al. Imaging the context-sensitivity of ventral temporal category representations using high-resolution fMRI. Soc. Neurosci. Abstr. 262.12 (2006).

Baker, C.I., Simmons, W.K., Bellgowan, P.S. & Kriegeskorte, N. Circular inference in neuroscience: the dangers of double dipping. Soc. Neurosci. Abstr. 104.11 (2007).

Vul, E. & Kanwisher, N. Begging the question: the non-independence error in fMRI data analysis. in Foundations and Philosophy for Neuroimaging (eds. Hanson, S. & Bunzl, M.) (in the press).

Vul, E., Harris, C., Winkielman, P. & Pashler, H. Puzzlingly high correlations in fMRI studies of emotion, personality and social cognition. Perspect. Psychol. Sci. (in the press).

Benjamini, Y. Comment: microarrays, empirical bayes and the two-groups model. Statist. Sci. 23, 23–28 (2008).

Worsley, K.J., Evans, A.C., Marrett, S. & Neelin, P. A three-dimensional statistical analysis for CBF activation studies in human brain. J. Cereb. Blood Flow Metab. 12, 900–918 (1992).

Friston, K.J., Jezzard, P. & Turner, R. Analysis of functional MRI time-series. Hum. Brain Mapp. 1, 153–171 (1994).

Worsley, K.J. & Friston, K.J. Analysis of fMRI time-series revisited—again. Neuroimage 2, 173–181 (1995).

Nichols, T. & Hayasaka, S. Controlling the family-wise error rate in functional neuroimaging: a comparative review. Stat. Methods Med. Res. 12, 419–446 (2003).

Genovese, C.R., Lazar, N.A. & Nichols, T. Thresholding of statistical maps in functional neuroimaging using the false discovery rate. Neuroimage 15, 870–878 (2002).

Friston, K.J., Rotshtein, P., Geng, J.J., Sterzer, P. & Henson, R.N. A critique of functional localisers. Neuroimage 30, 1077–1087 (2006).

Saxe, R., Brett, M. & Kanwisher, N. Divide and conquer: a defense of functional localizers. Neuroimage 30, 1088–1096 (2006).

Haxby, J.V. et al. Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science 293, 2425–2430 (2001).

Cox, D.D. & Savoy, R.L. Functional magnetic resonance imaging (fMRI) ‘brain reading’: detecting and classifying distributed patterns of fMRI activity in human visual cortex. Neuroimage 19, 261–270 (2003).

Mitchell, T.M., Hutchinson, R., Niculescu, R.S., Pereira, F. & Wang, X. Learning to decode cognitive states from brain images. Mach. Learn. 57, 145–175 (2004).

Kriegeskorte, N., Goebel, R. & Bandettini, P. Information-based functional brain mapping. Proc. Natl. Acad. Sci. USA 103, 3863–3868 (2006).

Norman, K.A., Polyn, S.M., Detre, G.J. & Haxby, J.V. Beyond mind-reading: multi-voxel pattern analysis of fMRI data. Trends Cogn. Sci. 10, 424–430 (2006).

Strother, S.C. et al. The quantitative evaluation of functional neuroimaging experiments: the NPAIRS data analysis framework. Neuroimage 15, 747–771 (2002).

Strother, S. et al. Optimizing the fMRI data-processing pipeline using prediction and reproducibility performance metrics. I. A preliminary group analysis. Neuroimage 23, S196–S207 (2004).

Mitchell, T.M. Machine Learning (McGraw Hill, Portland, Oregon, 1997).

Duda, R.O., Hart, P.E. & Stork, D.G. Pattern Classification. 2nd edn. (Wiley, New York, 2001).

Bishop, C.M. Pattern Recognition and Machine Learning (Springer, New York, 2006).

Kant, I. Kritik der reinen Vernunft. 2nd edn. http://www.gutenberg.org/dirs/etext04/8ikc210.txt (1781).