Circulants, displacements and decompositions of matrices

Springer Science and Business Media LLC - Tập 15 Số 5 - Trang 730-743 - 1992
Israel Gohberg1, Vadim Olshevsky1
1School of Mathematical Sciences Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat-Aviv, Israel

Tóm tắt

Từ khóa


Tài liệu tham khảo

[AG] G. Ammar and P. Gader,New decompositions of the inverse of a Toeplitz matrix, Signal Processing, Scattering and Operator Theory, and Numerical Methods, Proc. Int. Symp. MTNS-89, vol. III, 421?428, Birkhauser, Boston, 1990.

[BAS] A. Ben-Artzi and T. Shalom,On inversion of Toeplitz and close to Toeplitz matrices, Linear Algebra and its Appl.,75 (1986), 173?192.

[FMKL] B. Friedlander, M. Morf, T. Kailath and L. Ljung,New inversion formula for matrices classified in terms of their distance from Toeplitz matrices, Linear Algebra and its Appl.,27 (1979), 31?60.

[G] P. Gader,Displacement operator based decompositions of matrices using circulants or other group matrices, Linear Algebra and its Appl.,139 (1990), 111?131.

[GF] I. Gohberg and I. Feldman,Convolution equations and projection methods for their solutions, Translations of Mathematical Monographs,41, Amer. Math. Soc., 1974.

[GK] I. Gohberg and N. Krupnik,A formula for the inversion of finite Toeplitz matrices (in Russian), Mat. Issled.,7 (12) (1972), 272?328.

[GS] I. Gohberg and A. Semencul,On the inversion of finite Toeplitz matrices and their continuous analogs (in Russian), Mat. Issled.,7 (2) (1972), 201?233.

[HR] G. Heinig and K. Rost,Algebraic methods for Toeplitz-like matrices and operators, Akademie-Verlag, Berlin, 1984.

[K] T. Kailath,Signal processing applications of some moment problems, Proc. of Symposia in Appl. Math., vol.37, 71?109. AMS annual meeting, short course reprinted inMoments in mathematics, ed. H. Landau, San Antonio, TX, January 1987.

[KKM] T. Kailath, S. Kung and M. Morf,Displacement ranks of matrices and linear equations, J. Math. Anal. and Appl.,68 (1979), 395?407.