CircRNA0007766 accelerates cancer progression via miR-34c-5p/cyclin D1 axis in adenocarcinoma of the esophagogastric junction (AEG)

Cellular Signalling - Tập 112 - Trang 110912 - 2023
Feng Wu1, Xin Guo2, Yifan Ren1, Yuting Peng3, Zhiyong Lai4, Jun Xu4,5
1First Hospital of Shanxi Medical University, Taiyuan, Shanxi province, China
2Medical ICU, Shanxi Province Cancer Hospital/ Shanxi Hospital Affiliated to Cancer Hospital,Chinese Academy of Medical Sciences, Taiyuan, Shanxi Province, China
3Faculty of Graduate Studies, Shanxi Medical University, Taiyuan,Shanxi Province, China
4Department of Hepatobiliary and Pancreatic Surgery, First Hospital of Shanxi Medical University, Taiyuan,Shanxi Province, China
5Institute of Liver Diseases and Organ Transplantation, Shanxi Medical University, Taiyuan,Shanxi Province, China

Tài liệu tham khảo

Hayakawa, 2016, Oesophageal adenocarcinoma and gastric cancer: should we mind the gap?, Nat. Rev. Cancer, 16, 305, 10.1038/nrc.2016.24 Siewert, 1998, Classification of adenocarcinoma of the oesophagogastric junction, Br. J. Surg., 85, 1457, 10.1046/j.1365-2168.1998.00940.x Pectasides, 2018, Genomic heterogeneity as a barrier to precision medicine in gastroesophageal adenocarcinoma, Cancer Discov., 8, 37, 10.1158/2159-8290.CD-17-0395 Crew, 2004, Epidemiology of upper gastrointestinal malignancies, Semin. Oncol., 31, 450, 10.1053/j.seminoncol.2004.04.021 Siegel, 2019, Cancer statistics, 2019, CA Cancer J. Clin., 69, 7, 10.3322/caac.21551 Nagaraja, 2019, Genomics and targeted therapies in gastroesophageal adenocarcinoma, Cancer Discov., 9, 1656, 10.1158/2159-8290.CD-19-0487 Lynch, 2005, Gastric cancer: new genetic developments, J. Surg. Oncol., 90, 114, 10.1002/jso.20214 Balihodzic, 2022, Non-coding RNAs and ferroptosis: potential implications for cancer therapy, Cell Death Differ., 29, 1094, 10.1038/s41418-022-00998-x Chen, 2020, The expanding regulatory mechanisms and cellular functions of circular RNAs, Nat. Rev. Mol. Cell Biol., 21, 475, 10.1038/s41580-020-0243-y Huang, 2017, Recent progress in circular RNAs in human cancers, Cancer Lett., 404, 8, 10.1016/j.canlet.2017.07.002 Liu, 2022, Circular RNAs: characterization, cellular roles, and applications, Cell, 185, 2016, 10.1016/j.cell.2022.04.021 Kristensen, 2022, The emerging roles of circRNAs in cancer and oncology, Nat. Rev. Clin. Oncol., 19, 188, 10.1038/s41571-021-00585-y Salmena, 2011, A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language?, Cell, 146, 353, 10.1016/j.cell.2011.07.014 Yu, 2022, Circular RNA hsa_circ_0002360 promotes proliferation and invasion and inhibits oxidative stress in gastric Cancer by sponging miR-629-3p and regulating the PDLIM4 expression, Oxidative Med. Cell. Longev., 2022, 2775433, 10.1155/2022/2775433 Shi, 2020, Circular RNA LPAR3 sponges microRNA-198 to facilitate esophageal cancer migration, invasion, and metastasis, Cancer Sci., 111, 2824, 10.1111/cas.14511 Prieto, 2008, Human gene coexpression landscape: confident network derived from tissue transcriptomic profiles, PLoS One, 3, 10.1371/journal.pone.0003911 Lai, 2019, Circular RNA 0047905 acts as a sponge for microRNA4516 and microRNA1227-5p, initiating gastric cancer progression, Cell Cycle, 18, 1560, 10.1080/15384101.2019.1618122 Schmittgen, 2008, Analyzing real-time PCR data by the comparative C(T) method, Nat. Protoc., 3, 1101, 10.1038/nprot.2008.73 Gertler, 2011, How to classify adenocarcinomas of the esophagogastric junction: as esophageal or gastric cancer?, Am. J. Surg. Pathol., 35, 1512, 10.1097/PAS.0b013e3182294764 Liu, 2015, Comparison on Clinicopathological features and prognosis between Esophagogastric junctional adenocarcinoma (Siewert II/III types) and distal gastric adenocarcinoma: retrospective cohort study, a single institution, high volume experience in China, Medicine, 94 Kristensen, 2019, The biogenesis, biology and characterization of circular RNAs, Nat. Rev. Genet., 20, 675, 10.1038/s41576-019-0158-7 Li, 2017, CircHIPK3 sponges miR-558 to suppress heparanase expression in bladder cancer cells, EMBO Rep., 18, 1646, 10.15252/embr.201643581 Huang, 2015, cir-ITCH plays an inhibitory role in colorectal cancer by regulating the Wnt/β-catenin pathway, PLoS One, 10 Fu, 2017, Hsa_circ_0005986 inhibits carcinogenesis by acting as a miR-129-5p sponge and is used as a novel biomarker for hepatocellular carcinoma, Oncotarget, 8, 43878, 10.18632/oncotarget.16709 Jin, 2017, Circular RNA hsa-circ-0016347 promotes proliferation, invasion and metastasis of osteosarcoma cells, Oncotarget, 8, 25571, 10.18632/oncotarget.16104 Chen, 2018, Circular RNA: an emerging non-coding RNA as a regulator and biomarker in cancer, Cancer Lett., 418, 41, 10.1016/j.canlet.2018.01.011 Hunter, 1994, Cyclins and cancer. II: cyclin D and CDK inhibitors come of age, Cell, 79, 573, 10.1016/0092-8674(94)90543-6 Qie, 2016, Cyclin D1, cancer progression, and opportunities in cancer treatment, J. Mol. Med. (Berl.), 94, 1313, 10.1007/s00109-016-1475-3 Musgrove, 2011, Cyclin D as a therapeutic target in cancer, Nat. Rev. Cancer, 11, 558, 10.1038/nrc3090 Benzeno, 2006, Identification of mutations that disrupt phosphorylation-dependent nuclear export of cyclin D1, Oncogene, 25, 6291, 10.1038/sj.onc.1209644 Montalto, 2020, Cyclin D1 in cancer: a molecular connection for cell cycle control, adhesion and invasion in tumor and stroma, Cells, 9, 10.3390/cells9122648 Forest, 2021, Cyclin D1 expression in ganglioglioma, pleomorphic xanthoastrocytoma and pilocytic astrocytoma, Exp. Mol. Pathol., 121, 104652, 10.1016/j.yexmp.2021.104652 Hansen, 2013, Natural RNA circles function as efficient microRNA sponges, Nature, 495, 384, 10.1038/nature11993 Nakuluri, 2019, Hypoxia induces ZEB2 in podocytes: implications in the pathogenesis of proteinuria, J. Cell. Physiol., 234, 6503, 10.1002/jcp.27387 Nakuluri, 2019, Cerebral ischemia induces TRPC6 via HIF1α/ZEB2 axis in the glomerular podocytes and contributes to proteinuria, Sci. Rep., 9, 17897, 10.1038/s41598-019-52872-5