Cinnamon Modulates Toll-Like Receptors: a New Therapeutic Approach for Diabetes

Amirhossein Niknejad1,2, Seyed Mehrad Razavi1,2, Yasamin Hosseini1,2, Zahra Najafi Arab1,2, Amir Hossein Abdolghaffari1,2, Saeideh Momtaz3,4
1Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
2Gastrointestinal Pharmacology Interest Group, Universal Scientific Education and Research Network, Tehran, Iran
3Medicinal Plants Research Center, Institute of Medicinal Plants, Academic Center for Education, Culture and Research, Karaj, Iran
4Department of Toxicology and Pharmacology, School of Pharmacy, and Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, The Institute of Pharmaceutical Sciences, Tehran University of Medical Sciences, Tehran, Iran

Tóm tắt

Diabetes mellitus is a chronic metabolic disease with a high global incidence that can lead to serious and life-threatening conditions. Diabetes mellitus and its related complications are associated with several inflammatory events majorly caused by irregular insulin action. Toll-like receptors are considered to play a pivotal role in this scenario by acting as a mediator of the immune and inflammatory systems and are part of the innate immunity system recognizing pathogens entering the body, categorized as surface or inner receptors. Different toll-like receptors have been identified and each can further activate other inflammatory pathways. They are believed to be responsible for various inflammatory and immune-related disorders such as rheumatoid arthritis, lupus, and sclerosis. Toll-like receptors are capable of activating nuclear factor kappa B and interferons. Cinnamon as a traditional spice has innumerable health benefits due to its characteristics such as antioxidant, anti-inflammatory, anti-microbial, neuroprotective, lipid-lowering, glucose-lowering, and immunomodulatory. It is considered to be advantageous for diabetic patients and can affect the toll-like receptor pathway. Barks of Cinnamomum species, Lauraceae, are rich in aromatic volatile compounds, such as cinnamaldehyde and cinnamic acid; also no serious side effects have been reported for these compounds. In this review, it was examined how cinnamon could impact diabetes and its complications by affecting the toll-like receptor pathways. Cinnamon derivatives can affect toll-like receptor downstream pathways and cytokines such as NF-κB, interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α.

Tài liệu tham khảo

Abraham K, Wöhrlin F, Lindtner O, Heinemeyer G, Lampen A (2010) Toxicology and risk assessment of coumarin: focus on human data. Mol Nutr Food Res 54:228–239. https://doi.org/10.1002/mnfr.200900281 Adisakwattana S (2017) Cinnamic acid and its derivatives: mechanisms for prevention and management of diabetes and its complications. Nutrients 9:163. https://doi.org/10.3390/nu9020163 Aghamiri SH, Komlakh K, Ghaffari M (2022) Toll-like receptors (TLRs) and their potential therapeutic applications in diabetic neuropathy. Int Immunopharmacol 102:108398. https://doi.org/10.1016/j.intimp.2021.108398 Ahmad M, Lim CP, Akowuah GA, Ismail N, Hashim MA, Hor SY, Ang LF, Yam MF (2013) Safety assessment of standardised methanol extract of Cinnamomum burmannii. Phytomed 20:1124–1130. https://doi.org/10.1016/j.phymed.2013.05.005 Alves DDN, Martins RX, Ferreira D S, Alves AF, de Andrade C, Batista TM, Lazarini JG, Amorim S, Rosalen P L, Farias DF, de Castro R D (2021) Toxicological parameters of a formulation containing cinnamaldehyde for use in treatment of oral fungal infections: an in vivo study. Biomed Res Int 2305695. https://doi.org/10.1155/2021/2305695 Andrade C, Gomes NGM, Duangsrisai S, Andrade PB, Pereira DM, Valentão P (2020) Medicinal plants utilized in thai traditional medicine for diabetes treatment: ethnobotanical surveys, scientific evidence and phytochemicals. J Ethnopharmacol 263:113177. https://doi.org/10.1016/j.jep.2020.113177 Anwar MA, Shah M, Kim J, Choi S (2019) Recent clinical trends in toll-like receptor targeting therapeutics. Med Res Rev 39:1053–1090. https://doi.org/10.1002/med.21553 Bae WY, Choi J S, Jeong JW (2018) The neuroprotective effects of cinnamic aldehyde in an MPTP mouse model of Parkinson’s disease. Int J Mol Sci 19. https://doi.org/10.3390/ijms19020551 Barani M, Sangiovanni E, Angarano M, Rajizadeh MA, MehrabaniM Piazza S, Gangadharappa HV, Pardakhty A, Mehrbani M, Dell’Agli M, Nematollahi MH (2021) Phytosomes as innovative delivery dystems for phytochemicals: a comprehensive review of literature. Int J Nanomedicine 16:6983–7022. https://doi.org/10.2147/ijn.S318416 Bickers D, Calow P, Greim H, Hanifin JM, Rogers AE, Saurat JH, Sipes IG, Smith RL, Tagami H (2005) A toxicologic and dermatologic assessment of cinnamyl alcohol, cinnamaldehyde and cinnamic acid when used as fragrance ingredients. Food Chem Toxicol 43:799–836. https://doi.org/10.1016/j.fct.2004.09.013 Błaszczyk N, Rosiak A, Kałużna-Czaplińska J (2021) The potential role of cinnamon in human health. Forests 12 (5):648. https://doi.org/10.3390/f12050648 Botos I, Segal DM, Davies DR (2011) The structural biology of toll-like receptors. Structure 19:447–459. https://doi.org/10.1016/j.str.2011.02.004 Botteri G, Montori M, Gumà A, Pizarro J, Cedó L, Escolà-Gil JC, Li D, Barroso E, Palomer X, Kohan AB, Vázquez-Carrera M (2017) VLDL and apolipoprotein CIII induce ER stress and inflammation and attenuate insulin signalling via toll-like receptor 2 in mouse skeletal muscle cells. Diabetologia 60:2262–2273. https://doi.org/10.1007/s00125-017-4401-5 Brancheau D, Patel B, Zughaib M (2015) Do cinnamon supplements cause acute hepatitis? Am J Case Rep 16:250–254. https://doi.org/10.12659/AJCR.892804 Celhar T, Magalhães R, Fairhurst AM (2012) TLR7 and TLR9 in SLE: when sensing self goes wrong. Immunol Res 53:58–77. https://doi.org/10.1007/s12026-012-8270-1 Chang K, Zeng N, Ding Y, Zhao X, Gao C, Li Y, Wang H, Liu X, Niu Y, Sun Y, Li T, Shi Y, Wu C, Li Z (2022) Cinnamaldehyde causes developmental neurotoxicity in zebrafish via the oxidative stress pathway that is rescued by astaxanthin. Food Funct 13:13028–13039. https://doi.org/10.1039/d2fo02309a Chao LK, Hua KF, Hsu HY, Cheng S, Lin IF, Chen CJ, Chen ST, Chang ST (2008) Cinnamaldehyde inhibits pro-inflammatory cytokines secretion from monocytes/macrophages through suppression of intracellular signaling. Food Chem Toxicol 46:220–231. https://doi.org/10.1016/j.fct.2007.07.016 Chase C, Doyle A, John SS, Laurent T, Griffith S (2022) Post-operative haemorrhage secondary to cinnamon use a case report. Int J Surg Case Rep 95:107179. https://doi.org/10.1016/j.ijscr.2022.107179 Chen JQ, Szodoray P, Zeher M (2016) Toll-like receptor pathways in autoimmune diseases. Clin Rev Allergy Immunol 50:1–17. https://doi.org/10.1007/s12016-015-8473-z Chen BJ, Fu CS, Li GH, Wang XN, Lou HX, Ren DM, Shen T (2017) Cinnamaldehyde analogues as potential therapeutic agents. Mini Rev Med Chem 17:33–43. https://doi.org/10.2174/1389557516666160121120744 Chen LL, Lee MH, Chang CL, Liou KT, Liu SH, Chern M, Chen HI, Shen YC, Wang YH (2021) Suppression of inflammatory and fibrotic signals by cinnamon (Cinnamomum cassia) and cinnamaldehyde in cyclophosphamide-induced overactive bladder in mice. Evid-Based Compl Alt 2021:5205759. https://doi.org/10.1155/2021/5205759 Chen P, Zhou J, Ruan A, Zeng L, Liu J, Wang Q (2022) Cinnamic aldehyde, the main monomer component of cinnamon, exhibits anti-inflammatory property in OA synovial fibroblasts via TLR4/MyD88 pathway. J Cell Mol Med 26:913–924. https://doi.org/10.1111/jcmm.17148 Chung J, Kim S, Lee HA, Park MH, Kim S, Song YR, Na HS (2018) trans-Cinnamic aldehyde inhibits aggregatibacter actinomycetemcomitans-induced inflammation in THP-1-derived macrophages via autophagy activation. J Periodontol 89:1262–1271. https://doi.org/10.1002/jper.17-0727 Conti BJ, Búfalo MC, GolimMde A, Bankova V, Sforcin JM (2013) Cinnamic acid is partially involved in propolis immunomodulatory action on human monocytes. Evid-Based Compl Alt 2013:109864. https://doi.org/10.1155/2013/109864 Cruz-Tirado JP, Lima Brasil Y, Freitas Lima A, Alva Pretel H, Teixeira Godoy H, Barbin D, Siche R (2023) Rapid and non-destructive cinnamon authentication by NIR-hyperspectral imaging and classification chemometrics tools. Spectrochim Acta A Mol Biomol Spectrosc 289:122226. https://doi.org/10.1016/j.saa.2022.122226 De Meyts P (2004) Insulin and its receptor: structure, function and evolution. Bioessays 26:1351–1362. https://doi.org/10.1002/bies.20151 De P, Baltas M, Bedos-Belval F (2011) Cinnamic acid derivatives as anticancer agents-a review. Curr Med Chem 18:1672–1703. https://doi.org/10.2174/092986711795471347 Debreceni IL, Chimenti MS, Serreze DV, Geurts AM, Chen YG, Lieberman SM (2020) Toll-like receptor 7 Is required for lacrimal gland autoimmunity and type 1 diabetes development in male nonobese diabetic mice. Int J Mol Sci 21:9478. https://doi.org/10.3390/ijms21249478 Deng JH, Li JH, Zhao YL, Wang GS (2021) Effect and safety of cinnamaldehyde on immunosuppressed mice with invasive pulmonary candidiasis. Chin J Integr Med 27:286–290. https://doi.org/10.1007/s11655-020-3075-x Devaraj S, Tobias P, Jialal I (2011) Knockout of toll-like receptor-4 attenuates the pro-inflammatory state of diabetes. Cytokine 55:441–445. https://doi.org/10.1016/j.cyto.2011.03.023 Ding Y, Qiu L, Zhao G, Xu J, Wang S (2010) Influence of cinnamaldehyde on viral myocarditis in mice. Am J Med Sci 340:114–120. https://doi.org/10.1097/MAJ.0b013e3181dd3b43 El-Tanbouly GS, Abdelrahman RS (2022) Novel anti-arthritic mechanisms of trans-cinnamaldehyde against complete Freund’s adjuvant-induced arthritis in mice: involvement of NF-кB/TNF-α and IL-6/IL-23/ IL-17 pathways in the immuno-inflammatory responses. Inflammopharmacol 30:1769–1780. https://doi.org/10.1007/s10787-022-01005-y Elzinga S, Murdock BJ, Guo K, Hayes JM, Tabbey MA, Hur J, Feldman EL (2019) Toll-like receptors and inflammation in metabolic neuropathy; a role in early versus late disease? Exp Neurol 320:112967. https://doi.org/10.1016/j.expneurol.2019.112967 Eraky SM, Abdel-Rahman N, Eissa LA (2018) Modulating effects of omega-3 fatty acids and pioglitazone combination on insulin resistance through toll-like receptor 4 in type 2 diabetes mellitus. Prostaglandins Leukot Essent Fat 136:123–129. https://doi.org/10.1016/j.plefa.2017.06.009 Esmaeili F, Zahmatkeshan M, Yousefpoor Y, Alipanah H, Safari E, Osanloo M (2022) Anti-inflammatory and anti-nociceptive effects of cinnamon and clove essential oils nanogels: an in vivo study. BMC Complement Med Ther 22:143. https://doi.org/10.1186/s12906-022-03619-9 Fu Y, Yang P, Zhao Y, Zhang L, Zhang Z, Dong X, Wu Z, Xu Y, Chen Y (2017) trans-Cinnamaldehyde inhibits microglial activation and improves neuronal survival against neuroinflammation in BV2 microglial cells with lipopolysaccharide stimulation. Evid-Based Compl Alt 2017:4730878. https://doi.org/10.1155/2017/4730878 Fukuda D, Nishimoto S, Aini K, Tanaka A, Nishiguchi T, Kim-Kaneyama JR, Lei XF, Masuda K, Naruto T, Tanaka K, Higashikuni Y, Hirata Y, Yagi S, Kusunose K, Yamada H, Soeki T, Imoto I, Akasaka T, Shimabukuro M, Sata M (2019) Toll-like receptor 9 plays a pivotal role in angiotensin II-induced atherosclerosis. J Am Heart Assoc 8:e010860. https://doi.org/10.1161/jaha.118.010860 Gu DT, Tung TH, Jiesisibieke ZL, Chien CW, Liu WY (2021) Safety of cinnamon: an umbrella review of meta-analyses and systematic reviews of randomized clinical trials. Front Pharmacol 12:790901. https://doi.org/10.3389/fphar.2021.790901 Haghani F, Arabnezhad MR, Mohammadi S, Ghaffarian-Bahraman A (2022) Aloe vera and streptozotocin-induced diabetes mellitus. Rev Bras Farmacogn 32:174–187. https://doi.org/10.1007/s43450-022-00231-3 Hariri M, Ghiasvand R (2016) Cinnamon and chronic diseases. In: Gupta S, Prasad S, Aggarwal B (eds), Adv Exp Med Biol vol 929, Springer, Cham. pp 1-24. https://doi.org/10.1007/978-3-319-41342-6_1 He W, Zhang W, Zheng Q, Wei Z, Wang Y, Hu M, Ma F, Tao N, Luo C (2019) Cinnamaldehyde causes apoptosis of myeloid-derived suppressor cells through the activation of TLR4. Oncol Lett 18:2420–2426. https://doi.org/10.3892/ol.2019.10544 Hong SH, Ismail IA, Kang SM, Han DC, Kwon BM (2016) Cinnamaldehydes in cancer chemotherapy. Phytother Res 30:754–767. https://doi.org/10.1002/ptr.5592 Huang H, Wang Y (2017) The protective effect of cinnamaldehyde on lipopolysaccharide induced acute lung injury in mice. Cell Mol Biol 63:58–63. https://doi.org/10.14715/cmb/2017.63.8.13 Huang Z, Lu F, Dong H, Xu L, Chen G, Zou X, Lei H (2011) Effects of cinnamon granules on pharmacokinetics of berberine in rhizoma coptidis granules in healthy male volunteers. J Huazhong Univ Sci Technolog Med Sci 31:379–383. https://doi.org/10.1007/s11596-011-0385-4 Ibrahim EA, Moawed FSM, Moustafa EM (2020) Suppression of inflammatory cascades via novel cinnamic acid nanoparticles in acute hepatitis rat model. Arch Biochem Biophys 696:108658. https://doi.org/10.1016/j.abb.2020.108658 Iwata N, Kainuma M, Kobayashi D, Kubota T, Sugawara N, Uchida A, Ozono S, Yamamuro Y, Furusyo N, Ueda K, Tahara E, Shimazoe T (2016) The relation between hepatotoxicity and the total coumarin intake from traditional Japanese medicines containing cinnamon bark. Front Pharmacol 7:174. https://doi.org/10.3389/fphar.2016.00174 Janeway CA Jr, Medzhitov R (2002) Innate immune recognition. Annu Rev Immunol 20:197–216. https://doi.org/10.1146/annurev.immunol.20.083001.084359 Ji B, Zhao Y, Zhang Q, Wang P, Guan J, Rong R, Yu Z (2015) Simultaneous determination of cinnamaldehyde, cinnamic acid, and 2-methoxy cinnamic acid in rat whole blood after oral administration of volatile oil of Cinnamoni ramulus by UHPLC-MS/MS: an application for a pharmacokinetic study. J Chromatogr B Analyt Technol Biomed Life Sci 1001:107–113. https://doi.org/10.1016/j.jchromb.2015.07.049 Jia L, Vianna CR, Fukuda M, Berglund ED, Liu C, Tao C, Sun K, Liu T, Harper MJ, Lee CE, Lee S, Scherer PE, Elmquist JK (2014) Hepatocyte toll-like receptor 4 regulates obesity-induced inflammation and insulin resistance. Nat Commun 5:3878. https://doi.org/10.1038/ncomms4878 Jialal I, Major AM, Devaraj S (2014) Global toll-like receptor 4 knockout results in decreased renal inflammation, fibrosis and podocytopathy. J Diabetes Complicat 28:755–761. https://doi.org/10.1016/j.jdiacomp.2014.07.003 Ka SM, Kuoping Chao L, Lin JC, Chen ST, Li WT, Lin CN, Cheng JC, Jheng HL, Chen A, Hua KF (2016) A low toxicity synthetic cinnamaldehyde derivative ameliorates renal inflammation in mice by inhibiting NLRP3 inflammasome and its related signaling pathways. Free Radic Biol Med 91:10–24. https://doi.org/10.1016/j.freeradbiomed.2015.12.003 Kagan JC, Medzhitov R (2006) Phosphoinositide-mediated adaptor recruitment controls toll-like receptor signaling. Cell 125:943–955. https://doi.org/10.1016/j.cell.2006.03.047 Kang LL, Zhang DM, Ma CH, Zhang JH, Jia KK, Liu JH, Wang R, Kong LD (2016) Cinnamaldehyde and allopurinol reduce fructose-induced cardiac inflammation and fibrosis by attenuating CD36-mediated TLR4/6-IRAK4/1 signaling to suppress NLRP3 inflammasome activation. Sci Rep 6:27460. https://doi.org/10.1038/srep27460 Kanuri G, Weber S, Volynets V, Spruss A, Bischoff SC, Bergheim I (2009) Cinnamon extract protects against acute alcohol-induced liver steatosis in mice. J Nutr 139:482–487. https://doi.org/10.3945/jn.108.100495 Kawai T, Akira S (2010) The role of pattern-recognition receptors in innate immunity: update on toll-like receptors. Nat Immunol 11:373–384. https://doi.org/10.1038/ni.1863 Kerner W, Brückel J (2014) Definition, classification and diagnosis of diabetes mellitus. Exp Clin Endocrinol Diabetes 122:384–386. https://doi.org/10.1055/s-0034-1366278 Kim BH, Lee YG, Lee J, Lee JY, Cho JY (2010) Regulatory effect of cinnamaldehyde on monocyte/macrophage-mediated inflammatory responses. Mediators Inflamm 2010:529359. https://doi.org/10.1155/2010/529359 Klangjareonchai T, Eguchi N, Tantisattamo E, Ferrey AJ, Reddy U, Dafoe DC, Ichii H (2021) Current pharmacological intervention and medical management for diabetic kidney transplant recipients. Pharmaceutics 13:413. https://doi.org/10.3390/pharmaceutics13030413 Kowalska J, Tyburski J, Matysiak K, Jakubowska M, Łukaszyk J, Krzymińska J (2021) Cinnamon as a useful preventive substance for the care of human and plant health. Molecules 26:5299. https://doi.org/10.3390/molecules26175299 Lee KG, Xu S, Kang ZH, Huo J, Huang M, Liu D, Takeuchi O, Akira S, Lam KP (2012) Bruton’s tyrosine kinase phosphorylates toll-like receptor 3 to initiate antiviral response. Proc Natl Acad Sci USA 109:5791–5796. https://doi.org/10.1073/pnas.1119238109 Lee SM, Kok KH, Jaume M, Cheung TK, Yip TF, Lai JC, Guan Y, Webster RG, Jin DY, Peiris JS (2014) Toll-like receptor 10 is involved in induction of innate immune responses to influenza virus infection. Proc Natl Acad Sci USA 111:3793–3798. https://doi.org/10.1073/pnas.1324266111 Lee SC, Wang SY, Li CC, Liu CT (2018) Anti-inflammatory effect of cinnamaldehyde and linalool from the leaf essential oil of Cinnamomum osmophloeum kanehira in endotoxin-induced mice. J Food Drug Anal 26:211–220. https://doi.org/10.1016/j.jfda.2017.03.006 Li W, Zhi W, Zhao J, Li W, Zang L, Liu F, Niu X (2019) Cinnamaldehyde attenuates atherosclerosis via targeting the IκB/NF-κB signaling pathway in high fat diet-induced ApoE(-/-) mice. Food Funct 10:4001–4009. https://doi.org/10.1039/c9fo00396g Li AL, Ni WW, Zhang QM, Li Y, Zhang X, Wu HY, Du P, Hou JC, Zhang Y (2020) Effect of cinnamon essential oil on gut microbiota in the mouse model of dextran sodium sulfate-induced colitis. Microbiol Immunol 64:23–32. https://doi.org/10.1111/1348-0421.12749 Li W, Wang K, Liu Y, Wu H, He Y, Li C, Wang Q, Su X, Yan S, Su W, Zhang Y, Lin N (2022) A novel drug combination of mangiferin and vinnamic caid alleviates rheumatoid arthritis by inhibiting TLR4/NFκB/NLRP3 activation-Induced pyroptosis. Front Immunol 13:912933. https://doi.org/10.3389/fimmu.2022.912933 Ling F, Jiang C, Liu G, Li M, Wang G (2015) Anthelmintic efficacy of cinnamaldehyde and cinnamic acid from cortex cinnamon essential oil against dactylogyrus intermedius. J Parasitol 142:1744–1750. https://doi.org/10.1017/s0031182015001031 Lv C, Zhang Y, Chen X, Huang X, Xue M, Sun Q, Wang T, Liang J, He S, Gao J, Zhou J, Yu M, Fa J, Gao X (2015) New-onset diabetes after liver transplantation and its impact on complications and patient survival. J Diabetes 7:881–890. https://doi.org/10.1111/1753-0407.12275 Mamindla S, Koganti V, Ravouru N, Koganti B (2017) Effect of Cinnamomum cassia on the pharmacokinetics and pharmacodynamics of pioglitazone. Curr Clin Pharmacol 12:41–49. https://doi.org/10.2174/1574884712666170207152020 Mei J, Ma J, Xu Y, Wang Y, Hu M, Ma F, Qin Z, Xue R, Tao N (2020) Cinnamaldehyde treatment of prostate cancer-associated fibroblasts prevents their inhibitory effect on T cells through toll-like receptor 4. Drug Des Devel Ther 14:3363–3372. https://doi.org/10.2147/dddt.S241410 Moraes-Vieira PM, Yore MM, Sontheimer-Phelps A, Castoldi A, Norseen J, Aryal P, Simonyté Sjödin K, Kahn BB (2020) Retinol binding protein 4 primes the NLRP3 inflammasome by signaling through toll-like receptors 2 and 4. Proc Natl Acad Sci USA 117:31309–31318. https://doi.org/10.1073/pnas.2013877117 Mudaliar H, Pollock C, Komala MG, Chadban S, Wu H, Panchapakesan U (2013) The role of toll-like receptor proteins (TLR) 2 and 4 in mediating inflammation in proximal tubules. Am J Physiol Renal Physiol 305:F143-154. https://doi.org/10.1152/ajprenal.00398.2012 Nakasuji-Togi M, Togi S, Saeki K, Kojima Y, Ozato (2022) Herbal extracts that induce type I interferons through toll-like receptor 4 signaling. Food Nutr Res 66. https://doi.org/10.29219/fnr.v66.5524 Nitta T, Kanoh H, Inamori KI, Suzuki A, Takahashi T, Inokuchi JI (2019) Globo-series glycosphingolipids enhance toll-like receptor 4-mediated inflammation and play a pathophysiological role in diabetic nephropathy. J Glycobiol 29:260–268. https://doi.org/10.1093/glycob/cwy105 Pang GM, Li FX, Yan Y, Zhang Y, Kong LL, Zhu P, Wang KF, Zhang F, Liu B, Lu C (2019) Herbal medicine in the treatment of patients with type 2 diabetes mellitus. Chin Med J 13:78–85. https://doi.org/10.1097/cm9.0000000000000006 Park C, Lee H, Hong S, Molagoda IMN, Jeong JW, Jin CY, Kim GY, Choi SH, Hong SH, Choi YH (2021) Inhibition of lipopolysaccharide-induced inflammatory and oxidative responses by trans-cinnamaldehyde in C2C12 myoblasts. Int J Med Sci 18:2480–2492. https://doi.org/10.7150/ijms.59169 Pharmacologic approaches to glycemic treatment: standards of medical care in diabetes-2021. Diabetes Care 44 (Suppl 1):S111-S124. https://doi.org/10.2337/dc21-S009 Peters MM, Caldwell J (1994) Studies on trans-cinnamaldehyde. 1. The influence of dose size and sex on its disposition in the rat and mouse. Food Chem Toxicol 32:869–876. https://doi.org/10.1016/0278-6915(94)90084-1 Ranasinghe P, Pigera S, Premakumara GA, Galappaththy P, Constantine GR, Katulanda P (2013) Medicinal properties of ‘true’ cinnamon (Cinnamomum zeylanicum): a systematic review. BMC Complement Altern Med 13:275. https://doi.org/10.1186/1472-6882-13-275 Ranasinghe P, Jayawardena R, Pigera S, Wathurapatha WS, Weeratunga HD, Premakumara GAS, Katulanda P, Constantine GR, Galappaththy P (2017) Evaluation of pharmacodynamic properties and safety of Cinnamomum zeylanicum (Ceylon cinnamon) in healthy adults: a phase I clinical trial. BMC Complement Altern Med 17:550. https://doi.org/10.1186/s12906-017-2067-7 Rao PV, Gan SH (2014) Cinnamon: a multifaceted medicinal plant. Evid-Based Compl Alt 2014:642942. https://doi.org/10.1155/2014/642942 Ren Z, Zhang R, Li Y, Li Y, Yang Z, Yang H (2017) Ferulic acid exerts neuroprotective effects against cerebral ischemia/reperfusion-induced injury via antioxidant and anti-apoptotic mechanisms in vitro and in vivo. Int J Mol Med 40:1444–1456. https://doi.org/10.3892/ijmm.2017.3127 Ruwizhi N, Aderibigbe BA (2020) Cinnamic acid derivatives and their biological efficacy. Int J Mol Sci 21:5712. https://doi.org/10.3390/ijms21165712 Rychlicka M, Rot A, Gliszczyńska A (2021) Biological properties, health benefits and enzymatic modifications of dietary methoxylated derivatives of cinnamic acid. Foods 10:1417. https://doi.org/10.3390/foods10061417 Saikat ASM, Hossain R, Mina FB, Das S, Khan I, Mubarak M, Islam M (2021) Antidiabetic effect of garlic. Rev Bras Farmacogn 32:1–11. https://doi.org/10.1007/s43450-021-00193-y Samuelsen OB, Brenna J, Solheim E, Scheline RR (1986) Metabolism of the cinnamon constituent o-methoxycinnamaldehyde in the rat. Xenobiotica 16:845–852. https://doi.org/10.3109/00498258609038966 Sangal A, Rattan S, Maurya MR, Sadasivuni KK (2023) Novel formulation for co-delivery of cinnamon- and cumin-loaded polymeric nanoparticles to enhance their oral bioavailability. Biotech 13:63. https://doi.org/10.1007/s13205-023-03480-8 Sapienza PP, Ikeda GJ, Warr PI, Plummer SL, Dailey RE, Lin CS (1993) Tissue distribution and excretion of 14C-labelled cinnamic aldehyde following single and multiple oral administration in male Fischer 344 rats. Food Chem Toxicol 31:253–261. https://doi.org/10.1016/0278-6915(93)90075-a Schink A, Naumosk K, Kitanovski Z, Kampf CJ, Fröhlich-Nowoisky J, Thines E, Pöschl U, Schuppan D, Lucas K (2018) Anti-inflammatory effects of cinnamon extract and identification of active compounds influencing the TLR2 and TLR4 signaling pathways. Food Funct 9:5950–5964. https://doi.org/10.1039/c8fo01286e Schmidt AM (2018) Highlighting diabetes mellitus: the epidemic continues. Arterioscler Thromb Vasc Biol 38:e1–e8. https://doi.org/10.1161/atvbaha.117.310221 Sepehri Z, Kiani Z, Nasiri AA, Kohan F (2016) Toll-like receptor 2 and type 2 diabetes. Cell Mol Biol Lett 21:2. https://doi.org/10.1186/s11658-016-0002-4 Sharifi-Rad J, Dey A, Koirala N, Shaheen S, El Omari N, Salehi B, Goloshvili T, Cirone Silva NC, Bouyahya A, Vitalini S, Varoni EM, Martorell M, Abdolshahi A, Docea AO, Iriti M, Calina D, Les F, López V, Caruntu C (2021) Cinnamomum species: bridging phytochemistry knowledge, pharmacological properties and toxicological safety for health benefits. Front Pharmacol 12:e600139. https://doi.org/10.3389/fphar.2021.600139 Sharma S, Mandal A, Kant R, Jachak S, Jagzape M (2020) Is cinnamon efficacious for glycaemic control in type-2 diabetes mellitus? J Pak Med Assoc 70:2065–2069 Singh N, Rao AS, Nandal A, Kumar S, Yadav SS, Ganaie SA, Narasimhan B (2021) Phytochemical and pharmacological review of Cinnamomum verum J Presl-a versatile spice used in food and nutrition. Food Chem 338:127773. https://doi.org/10.1016/j.foodchem.2020.127773 Subramanian AP, Jaganathan SK, Manikandan A, Pandiaraj KNNG, Supriyanto E (2016) Recent trends in nano-based drug delivery systems for efficient delivery of phytochemicals in chemotherapy. RSC Advances 6:48294–48314. https://doi.org/10.1039/C6RA07802H Suzuki R, Kasuya Y, Sano A, Tomita J, Maruyama T, Kitamura M (2022) Comparison of various commercially available cinnamon barks using NMR metabolomics and the quantification of coumarin by quantitative NMR methods. J Nat Med 76:87–93. https://doi.org/10.1007/s11418-021-01554-6 Tian J, Song T, Wang H, Wang W, Ma X, Hu Y (2021) Toll-like receptor 2 antagonist ameliorates type 2 diabetes mellitus associated neuropathic pain by repolarizing pro-inflammatory macrophages. Neurochem Res 46:2276–2284. https://doi.org/10.1007/s11064-021-03365-3 Vargas-Soto FA, Céspedes-Acuña CL, Aqueveque-Muñoz PM, Alarcón-Enos JE (2017) Toxicity of coumarins synthesized by pechmann-duisberg condensation against Drosophila melanogaster larvae and antibacterial effects. Food Chem Toxicol 109:1118–1124. https://doi.org/10.1016/j.fct.2017.05.051 Wang YH, Avula B, Nanayakkara NP, Zhao J, Khan IA (2013) Cassia cinnamon as a source of coumarin in cinnamon-flavored food and food supplements in the united States. J Agric Food Chem 61:4470–4476. https://doi.org/10.1021/jf4005862 Yeh TF, Lin CY, Chang ST (2014) A potential low-coumarin cinnamon substitute: Cinnamomum osmophloeum leaves. J Agric Food Chem 62:1706–1712. https://doi.org/10.1021/jf405312q Youn HS, Lee JK, Choi YJ, Saitoh SI, Miyake K, Hwang DH, Lee JY (2008) Cinnamaldehyde suppresses toll-like receptor 4 activation mediated through the inhibition of receptor oligomerization. Biochem Pharmacol 75:494–502. https://doi.org/10.1016/j.bcp.2007.08.033 Zhang Y, Cao W, Xie YH, Yang Q, Li XQ, Liu XX, Wang SW (2012) The comparison of α-bromo-4-chlorocinnamaldehyde and cinnamaldehyde on coxsackie virus B3-induced myocarditis and their mechanisms. Int Immunopharmacol 14:107–113. https://doi.org/10.1016/j.intimp.2012.06.007 Zhao H, Xie Y, Yang Q, Cao Y, Tu H, Cao W, Wang S (2014) Pharmacokinetic study of cinnamaldehyde in rats by GC-MS after oral and intravenous administration. J Pharm Biomed Anal 89:150–157. https://doi.org/10.1016/j.jpba.2013.10.044 Zhao H, Yang Q, Xie Y, Sun J, Tu H, Cao W, Wang S (2015) Simultaneous determination of cinnamaldehyde and its metabolite in rat tissues by gas chromatography-mass spectrometry. Biomed Chromatogr 29:182–187. https://doi.org/10.1002/bmc.3254 Zhao J, Zhang X, Dong L, Wen Y, Zheng X, Zhang C, Chen R, Zhang Y, Li Y, He T, Zhu X, Li L (2015) Cinnamaldehyde inhibits inflammation and brain damage in a mouse model of permanent cerebral ischaemia. Br J Pharmacol 172:5009–5023. https://doi.org/10.1111/bph.13270 Zhao H, Zhang M, Zhou F, Cao W, Bi L, Xie Y, Yang Q, Wang S (2016) Cinnamaldehyde ameliorates LPS-induced cardiac dysfunction via TLR4-NOX4 pathway: the regulation of autophagy and ROS production. J Mol Cell Cardiol 101:11–24. https://doi.org/10.1016/j.yjmcc.2016.10.017 Zhu R, Liu H, Liu C, Wang L, Ma R, Chen B, Li L, Niu J, Fu M, Zhang D, Gao S (2017) Cinnamaldehyde in diabetes: a review of pharmacology, pharmacokinetics and safety. Pharmacol Res 122:78–89. https://doi.org/10.1016/j.phrs.2017.05.019 Zimmet P, Shaw J, Alberti KG (2003) Preventing type 2 diabetes and the dysmetabolic syndrome in the real world: a realistic view. Diabet Med 20:693–702. https://doi.org/10.1046/j.1464-5491.2003.01052.x