Phương pháp lấp đầy dữ liệu thiếu dựa trên PCA điều chỉnh theo từng khúc
Tóm tắt
Từ khóa
Tài liệu tham khảo
Balzano L, Chi Y, Lu YM (2018) Streaming pca and subspace tracking: The missing data case. Proc IEEE 106(8):1293–1310
Benzécri JP (1973) L’analyse des données. L’analyse des correspondances, Dunod, Tome II
Borgognone MG, Bussi J, Hough G (2001) Principal component analysis in sensory analysis: covariance or correlation matrix? Food Qual Preference 12(5–7):323–326
Bro R, Kjeldahl K, Smilde AK, Kiers HAL (2008) Cross-validation of component model: a critical look at current methods. Analy Bioanal Chem 390:1241–1251
Cardot H, Degras D (2018) Online principal component analysis in high dimension: which algorithm to choose? Int Stat Rev 86(1):29–50
Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soci Ser B 39(1):1–38
Dray S, Josse J (2015) Principal component analysis with missing values: a comparative survey of methods. Plant Ecol 216(5):657–667
Eckart C, Young G (1973) The approximation of one matrix by another of lower rank. Psychometrika 1:211–218
Folch-Fortuny A, Arteaga F, Ferrer A (2015) PCA model building with missing data: new proposals and a comparative study. Chemom Intell Lab Syst 146:77–88
Geraci M, Farcomeni A (2016) Probabilistic principal component analysis to identify profiles of physical activity behaviours in the presence of non-ignorable missing data. J R Stat Soc Ser C (Appl Stat) 65(1):51–75
Geraci M, Farcomeni A (2018) Principal component analysis in the presence of missing data. Advances in Principal Component Analysis. Springer, New York, pp 47–70
Golub GH, Van Loan CF (2012) Matrix computations, vol 3. JHU Press, Maryland
Gower JC (1971) Statistical methods of comparing different multivariate analyses of the same data. Mathematics in the archaeological and historical science. pp 138–149
Greenacre MJ (2010) Biplots in practice. Fundacion BBVA, Spain
Hall P, Marshall D, Martin R (2002) Adding and subtracting eigenspaces with eigenvalue decomposition and singular value decomposition. Image Vis Comput 20(13–14):1009–1016
Hastie T, Tibshirani R, Friedman J (2009) The elements of statistical learning: data mining, inference, and prediction, 2nd edn. Springer, NewYork
Hegde A, Principe JC, Erdogmus D, Ozertem U, Rao YN, Peddaneni H (2006) Perturbation-based eigenvector updates for on-line principal components analysis and canonical correlation analysis. J VLSI Signal Process Syst Signal Image Video Technol 45(1–2):85–95
Ilin A, Raiko T (2010) Practical approaches to principal component analysis in the presence of missing values. J Mach Learn Res 11:1957–2000
Iodice D’Enza A, Markos A, Buttarazzi D (2018) The idm package: incremental decomposition methods in R. J Stat Softw Code Snippets 86(4):1–24
Jolliffe IT (2002) Principal Component Analysis, 2nd edn. Springer-Verlag, New York
Josse J, Husson F (2012) Handling missing values in exploratory multivariate data analysis methods. J Soc Fr Stat 153(2):79–99
Josse J, Husson F, Pagès J (2009) Gestion des données manquantes en analyse en composantes principales. J Soci Fr Stat 150(2):28–51
Josse J, Timmerman ME, Kiers HA (2013) Missing values in multi-level simultaneous component analysis. Chemom Intell Lab Syst 129:21–32
Josse J, Husson F et al (2016) missMDA: a package for handling missing values in multivariate data analysis. J Stat Softw 70(1):1–31
Kiers HA (1997) Weighted least squares fitting using ordinary least squares algorithms. Psychometrika 62(2):251–266
Levey A, Lindenbaum M (2000) Sequential karhunen-loeve basis extraction and its application to images. IEEE Trans Image Process 9(8):1371–1374
Little RJ, Rubin DB (2019) Statistical analysis with missing data. John Wiley & Sons, Hoboken
Loisel S, Takane Y (2019) Comparisons among several methods for handling missing data in principal component analysis (PCA). Adv Data Anal Classif 13(2):495–518
Markos A, Iodice D’Enza A (2018) A framework for the incremental update of the MCA solution. Ital J Appl Stat 29(2–3):217–231
Navarrete P, Ruiz-del-Solar J (2002) Analysis and comparison of eigenspace-based face recognition approaches. Int J Pattern Recognit Artif Intell 16(07):817–830
Pagès J (2004) Analyse factorielle de données mixtes. Revue de Stat Appl 52(4):93–111
Rieth CA, Amsel BD, Tran R, Cook MB (2017). Additional Tennessee Eastman process simulation data for anomaly detection evaluation. https://doi.org/10.7910/DVN/6C3JR1
Robert P, Escoufier Y (1976) A unifying tool for linear multivariate statistical methods: the RV-coefficient. Appl Stat 25(3):257–265
Ross DA, Lim J, Lin RS, Yang MH (2008) Incremental learning for robust visual tracking. Int J Comput Vis 77(1–3):125–141
Severson KA, Molaro MC, Braatz RD (2017) Principal component analysis of process datasets with missing values. Processes 5(3):38
Sportisse A, Boyer C, Josse J (2020) Imputation and low-rank estimation with Missing Not At Random data. Stat Comput 30(6):1629–1643
Takane Y, Oshima-Takane Y (2003) Relationships between two methods for dealing with missing data in principal component analysis. Behaviormetrika 30(2):145–154