Chronic nicotine administration exacerbates tau pathology in a transgenic model of Alzheimer's disease

Salvatore Oddo1, Antonella Caccamo1, Kim N. Green1, Kevin Liang1, Levina Tran1, Yi-Ling Chen1, Frances M. Leslie1, Frank M. LaFerla1
1Departments of Neurobiology and Behavior and Pharmacology, University of California, Irvine, CA 92697

Tóm tắt

The association between nicotinic acetylcholine receptor (nAChR) dysfunction and cognitive decline in Alzheimer's disease (AD) has been widely exploited for its therapeutic potential. The effects of chronic nicotine exposure on Aβ accumulation have been studied in both humans and animal models, but its therapeutic efficacy for AD neuropathology is still unresolved. To date, noin vivostudies have addressed the consequences of activating nAChRs on tau pathology. To determine the effects of chronic nicotine administration on Aβ and tau pathology, we chronically administrated nicotine to a transgenic model of AD (3xTg-AD) in their drinking water. Here, we show that chronic nicotine intake causes an up-regulation of nicotinic receptors, which correlated with a marked increase in the aggregation and phosphorylation state of tau. These data show that nicotine exacerbates tau pathologyin vivo. The increase in tau phosphorylation appears to be due to the activation of p38-mitogen-activated protein kinase, which is known to phosphorylate tauin vivoandin vitro. We also show that the 3xTg-AD mice have an age-dependent reduction of α7nAChRs compared with age-matched nontransgenic mice in specific brain regions. The reduction of α7nAChRs is first apparent at 6 months of age and is restricted to brain regions that show intraneuronal Aβ42accumulation. Finally, this study highlights the importance of testing compounds designed to ameliorate AD pathology in a model with both neuropathological lesions because of the differential effects it can have on either Aβ or tau.

Từ khóa


Tài liệu tham khảo

Davies, P. & Maloney, A. J. (1976) Lancet 2, 1403.

10.1016/S0091-3057(96)00431-5

10.1006/nlme.1996.0068

10.3233/JAD-1999-14-503

10.1046/j.1460-9568.1999.00676.x

10.2174/1381612043386509

10.1016/0197-0186(94)90059-0

10.1016/S0169-328X(00)00031-0

10.1006/nbdi.2000.0317

10.1111/j.0953-816X.2004.03377.x

10.1046/j.1471-4159.2002.00874.x

Hellstrom-Lindahl, E., Moore, H. & Nordberg, A. (2000) J. Neurochem. 74, 777-784.10646530

10.1074/jbc.M212532200

10.1016/j.neurobiolaging.2003.08.012

10.1016/S0896-6273(03)00434-3

Hensley, K., Floyd, R. A., Zheng, N. Y., Nael, R., Robinson, K. A., Nguyen, X., Pye, Q. N., Stewart, C. A., Geddes, J., Markesbery, W. R., et al. (1999) J. Neurochem. 72, 2053-2058.10217284

10.1385/JMN:19:3:295

10.1046/j.1471-4159.2002.00951.x

Ospina, J. A., Broide, R. S., Acevedo, D., Robertson, R. T. & Leslie, F. M. (1998) J. Neurochem. 70, 1061-1068.9489726

10.1159/000110372

10.1212/WNL.52.7.1408

10.1007/s004010050732

10.1002/jnr.490270314

10.1016/0006-8993(86)90819-X

10.1016/0304-3940(86)90629-4

10.1002/jnr.490310115

Flores, C. M., Rogers, S. W., Pabreza, L. A., Wolfe, B. B. & Kellar, K. J. (1992) Mol. Pharmacol. 41, 31-37.1732720

10.1016/S0166-2236(98)01337-X

10.1016/S0006-8993(98)00407-7

10.1016/S0166-4328(00)00215-1

10.1074/jbc.275.8.5626

10.1523/JNEUROSCI.21-12-04125.2001

10.2174/1567205043332045

10.1038/ng0195-21

10.1046/j.1365-2559.2001.01082.x

10.1016/S0306-4522(01)00460-2

10.1016/j.neuron.2004.07.003

10.1016/S0014-5793(99)01279-X

10.1016/0896-6273(95)90232-5

10.1073/pnas.90.16.7789

10.1074/jbc.M200066200

10.3233/JAD-2002-4407