Chromosomal Sublocalization of the Transcribed Human Telomere Repeat Binding Factor 2 Gene and Comparative Mapping in the Mouse

Springer Science and Business Media LLC - Tập 24 - Trang 157-163 - 1998
Alan Y. Sakaguchi1, Susan S. Padalecki1, Vicki Mattern2, Angelica Rodriguez3, Robin J. Leach1, John R. McGill2, Michelle Chavez1, Troy A. Giambernardi1
1Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio
2Institute for Drug Development, San Antonio Cancer Institute, San Antonio
3Department of Biology, St. Mary's University, San Antonio

Tóm tắt

Telomere repeat binding factor 2 (TERF2) is one of two recently cloned mammalian telomere binding protein genes. TERF2 binds as a dimer with high affinity to the double-stranded TTAGGG telomeric repeat through an evolutionarily conserved myb-type DNA binding domain. TERF2 prevents telomere end-to-end fusion and may be important in maintaining genomic stability. We localized the transcribed TERF2 gene to human chromosome 16q22.1, tightly linked to the EST HUM000S343. The mouse Terf2 gene is situated by itself in a newly defined “bin” on chromosome 8 one crossover distal to Psm10 and Sntb2. Human TERF2 and mouse Terf2 are therefore part of a large evolutionarily conserved linkage group comprised of at least 25 known paralogous genes between human chromosome 16q and mouse chromosome 8.

Tài liệu tham khảo

Greider, C.W. (1996). Telomere length regulation. Annu. Rev. Biochem. 65:337–365. Zakian, V. (1995). Telomeres: beginning to understand the end. Science 270:1601–1607. Allshire, R.C., Dempster, M., and Hastie, N.D. (1989). Human telomeres contain at least three types of G-rich repeat distributed non-randomly. Nucl. Acids Res. 17:4611–4627. Kipling, D. (1997). Telomere structure and telomerase expression during mouse development and tumorigenesis. Eur. J. Cancer 33:792–800. Chong, L., van Steensel, B., Broccoli, D., Erdjument-Bromage, H., Hanish, J., Tempst, P., and de Lange, T. (1995). A human telomeric protein. Science 270:1663–1667. Luderus, M.E.E., van Steensel, B., Chong, L., Sibon, O.C.M., Cremers, F.F.M., and de Lange, T. (1996). Structure, subnuclear distribution, and nuclear matrix, association of the mammalian telomeric complex. J. Cell. Biol. 135:867–883. Bilaud, T., Brun, C., Ancelin, K., Koering, C.E., Laroche, T., and Gilson, E. (1997). Telomeric localization of TRF2, a novel human telobox protein. Nature Genet. 17:236–239. Broccoli, D., Chong, L., Oelmann, S., Fernald, A.A., Marziliano, N., van Steensel, B., Kipling, D., Le Beau, M.M., and de Lange, T. (1997a). Comparison of the human and mouse genes encoding the telomeric protein, TRF1; chromosomal localization, expression and conserved protein domains. Hum. Molec. Genet. 6:69–76. Broccoli, D., Smorgorzewska, A., Chong, L., and de Lange, T. (1997b). Human telomeres contain two distinct Myb-related proteins, TRF1 and TRF2. Nature Genet. 17:231–235. Konig, P., and Rhodes, D. (1997). Recognition of telomeric DNA. Trends Biochem. Sci. 22:43–47. Shen, M., Haggblom, C., Vogt, M., Hunter, T., and Lu, K.P. (1997). Characterization and cell cycle regulation of the related human telomeric proteins Pin2 and TRF1 suggest a role in mitosis. Proc. Natl. Acad. Sci. U.S.A. 94:13618–13623. van Steensel, B., and de Lange, T. (1997). Control of telomere length by the human telomeric protein TRF1. Nature 385:740–743. van Steensel, B., Smogorzeqska, A., and de Lange, T. (1998). TRF2 protects human telomeres from end-to-end fusions. Cell 92:401–413. Griffith, J., Bianchi, A., and de Lange, T. (1998). TRF1 promotes parallel pairing of telomeric tracts in vitro. J. Mol. Biol. 278:79–88. Smith, S., and de Lange, T. (1997). TRF1, a mammalian telomeric protein. Trends in Genet. 13:21–26. Fang, G., and Cech, T.R. (1995). Telomere proteins. In Telomeres. Cold Spring Harbor Laboratory Press, New York, pp 69–105. Young, A.C., Chavez, M., Giambernardi, T.A., Mattern, V., McGill, J.R., Harris, J.M., Sarosdy, M.F., Patel, P., and Sakaguchi, A.Y. (1997). Organization and expression of human telomere repeat binding factor genes. Somat. Cell Molec. Genet. 23:275–286. Counter, C.M., Avillon, A.A., LeFeuvre, C.E., Stewart, N.G., Greider, C.W., Harley, C.B., and Bacchetti, S. (1992). Telomere shortening associated with chromosome instability is arrested in immortal cells which express telomerase activity. EMBO J. 11:1921–1992. de Lange, T. (1995). Telomere dynamics and genome instability in human cancer. In Telomeres, Cold Spring Harbor Laboratory Press, New York, pp. 265–293. Drwinga, H.L., Toju, L.T., Kim, C.H., Greene, A.E., and Mulivor, R.A. (1993). NIGMS human/rodent somatic cell hybrid mapping panel 1 and 2. Genomics 16:311–314. Dubois, B.L., and Naylor, S.L. (1993). Characterization of NIGMS human/rodent somatic cell hybrid mapping panel 2 by PCR. Genomics 16:315–319. Stewart, E.A., McKusick, K.B., Aggarwal, A., Bajorek, E., Brady, S., Chu, A., Fang, N., Hadley, D., Harris, M., Hussain, S., Lee, R., Maratukulam, A., O'Connor, K., Perkins, S., Piercy, M., Qin, F., Reif, T., Sanders, C., She, Z., Sun, W-L., Tabar, P., Voyticky, S., Cowles, S., Fan, J-B., Mader, C., Quackenbush, J., Myers, R.M., and Cox, D.R. (1997). An STS-based radiation hybrid map of the human genome. Genome Research 7:422–433. Rowe, L.B., Nadeau, J.H., Turner, R., Frankel, W.N., Letts, V.A., Eppig, J.T., Ko, M.S.H., Thurston, S.J., Birkenmeier, E.H. (1994). Maps from two interspecific backcross DNA panels available as a community genetic mapping resource. Mammalian Genome 5:253–274. Shepherd, N.S., Pfrogner, B.D., Coulby, J.N., Ackerman, S.L., Vaidyanathan, G., Sauer, R.H., Balkenhol, T.C., and Sternberg, N. (1994). Preparation and screening of an arrayed human genomic library generated with the P1 cloning system. Proc. Natl. Acad. Sci. U.S.A. 91:2629–2635. Pinkel, D., Straume, T., and Gray, J.W. (1986). Cytogenetic analysis using quantitative, high sensitivity, fluorescence hybridization. Proc. Natl. Acad. Sci. U.S.A. 83:2934–2938. Chomczynski, P., and Sacchi, N. (1987). Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162:156–159. Chen, D., Magnuson, V.L., Steffensen, B., and Klebe, R.J. (1993). Use of stock solutions to simplify mRNA quantitation by reverse transcription-PCR assays. PCR Methods Applications 2:351–353. Francke, U., Lalley, P.A., Moss, W., Ivy, J., and Minna, J.D. (1977). Gene mapping in Mus musculus by interspecific cell hybridization: Assignment of the genes for tripeptidase-1 to chromosome 19, dipeptidase-2 to chromosome 18, acid phosphatase-1 to chromosome 12, and adenylate kinase-1 to chromosome 2. Cytogenet. Cell Genet. 19:47–84. Takahashi, N., and Ko, M.S.H. (1993). The short 3′-end region of complementary DNAs as PCR-based polymorphic markers for an expression map of the mouse genome. Genomics 16:161–168. Carver, E.A., and Stubbs, L. (1997). Zooming in on the human-mouse comparative map: genome conservation re-examined on a high-resolution scale. Genome Research 7:1123–1137. Mitelman, F., Kaneko, Y., and Trent, J. (1991). Report of the committee on chromosome changes in neoplasia. Cytogenet. Cell Genet. 58:1053–1079. Driouch, K., Dorion-Bonnet, F., Briffod, M., Champeme, M.H., Longy, M., and Lidereau, R. (1997). Loss of heterozygosity on chromosome arm 16q in breast cancer metastases. Genes Chromo. Cancer. 19:185–191. Kihana, T., Yano, N., Murao, S., Iketani, H., Hamada, K., Yano, J., Murao, S. (1996). Allelic loss of chromosome 16q in endometrial cancer: correlation with poor prognosis of patients and less differentiated histology. Jpn. J. Cancer Res. 87:1184–1190. Latil, A., Cussenot, O., Fournier, G., Driouch, K., and Lidereau, R. (1997). Loss of heterozygosity at chromosome 16q in prostate adenocarcinoma: identification of three independent regions. Cancer Res. 57:1058–1062. Suzuki, H., Komiya, A., Emi, M., Kuramochi, H., Shiraishi, T., Yatani, R., and Shimazaki, J. (1996). Three distinct commonly deleted regions of chromosome arm 16q in human primary and metastatic prostate cancers. Genes Chromo. Cancer 17:225–233.