Chromium carbide growth at low temperature by a highly efficient DLI-MOCVD process in effluent recycling mode
Tài liệu tham khảo
Michau, 2017, Evidence for a Cr metastable phase as a tracer in DLI-MOCVD chromium hard coatings usable in high temperature environment, Appl. Surf. Sci., 422, 198, 10.1016/j.apsusc.2017.05.253
Liu, 2001, Recycling technique for CVD diamond coated cutting tools, Surf. Coat. Technol., 137, 246, 10.1016/S0257-8972(00)01081-1
Wang, 2011, Electrochemical delamination of CVD-grown graphene film: toward the recyclable use of copper catalyst, ACS Nano, 5, 9927, 10.1021/nn203700w
Rees, 1996, Introduction, 1
Recycling International
V. Revankar, S. Lahoti, CVD-Siemens reactor process hydrogen recycle system. US20150107298 A1, (2015).
Lu, 2000, Economical deposition of a large area of high quality diamond film by a high power DC arc plasma jet operating in a gas recycling mode, Diam. Relat. Mater., 9, 1655, 10.1016/S0925-9635(00)00305-8
Noda, 2002, Closed recycle CVD process for mass production of SOG-Si from MG-Si, 308
Collingham, 1989, Effect of recycling on the axial distribution of coating thickness in a low pressure CVD reactor, J. Electrochem. Soc., 136, 787, 10.1149/1.2096745
Jensen, 1983, Modeling and analysis of low pressure CVD reactors, J. Electrochem. Soc., 130, 1950, 10.1149/1.2120129
Maury, 1996, Selection of metalorganic precursors for MOCVD of metallurgical coatings: application to Cr-based coatings, Surf. Coat. Technol., 86-87, 316, 10.1016/S0257-8972(96)03045-9
Jones, 1997
Kodas, 1994
Maury, 1992, Evaluation of tetra-alkylchromium precursors for OMCVD: I — films grown using Cr[CH2C(CH3)3]4, Thin Solid Films, 207, 82, 10.1016/0040-6090(92)90106-L
Abisset, 1998, Low temperature MOCVD of V-C-N coatings using bis(arene)vanadium as precursors, Surf. Coat. Technol., 108-109, 200, 10.1016/S0257-8972(98)00619-7
W. Hafner, E.O. Fischer, British Patent 976 573, Nov. 25, 1964.
Anantha, 1971, Chromium deposition from dicumene-chromium to form metal-semiconductor devices, J. Electrochem. Soc., 118, 163, 10.1149/1.2407936
Maury, 1990, Structural characterization of chromium carbide coatings deposited at low temperature by LPCVD process using dicumene chromium, Surf. Coat. Technol., 41, 51, 10.1016/0257-8972(90)90129-Z
Schuster, 1990, Influence of organochromium precursor chemistry on the microstructure of MOCVD chromium carbide coatings, Surf. Coat. Technol., 43-44, 185, 10.1016/0257-8972(90)90073-L
Polikarpov, 1983, Chromium films obtained by pyrolysis of chromium bisarene complexes in the presence of chlorinated hydrocarbons, Izv. Akad. Nauk SSSR, 20, 1839
T.P. Whaley, V. Norman, Carbonaceous solid bodies and processes for their manufacture, US Patent 3 252 824, May 24, 1966.
Schuster, 1991, Characterization of chromium nitride and carbonitride coatings deposited at low temperature by OMCVD, Surf. Coat. Technol., 46, 275, 10.1016/0257-8972(91)90170-2
Maury, 1999, Low temperature MOCVD routes to chromium metal thin films using bis(benzene)chromium, J. Electrochem. Soc., 146, 3716, 10.1149/1.1392539
Luzin, 1988, Chromium films produced by pyrolysis of its bis-arene complexes in the presence of sulfur-containing additives, Zh. Prikl. Khim., 61, 1235
Maury, 2009, Multilayer chromium based coatings grown by atmospheric pressure direct liquid injection CVD, Surf. Coat. Technol., 204, 983, 10.1016/j.surfcoat.2009.04.020
Drozda, 1996, Tool and manufacturing engineers handbook, vol. 8
Bryskin, 2013, Innovative processing technology of chromium carbide coating to apprise performance of piston rings, SAE Int. J. Mater. Manuf., 6, 131, 10.4271/2012-01-2327
Vahlas, 1998, A thermodynamic approach to the chemical vapor deposition of chromium and of chromium carbides starting from Cr(C6H6)2, Chem. Vap. Depos., 4, 69, 10.1002/(SICI)1521-3862(199803)04:02<69::AID-CVDE69>3.3.CO;2-7
Douard, 2008, Thermodynamic simulation of Atmospheric DLI-CVD processes for the growth of chromium based hard coatings using bis(benzene)chromium as molecular source, Surf. Coat. Technol., 203, 516, 10.1016/j.surfcoat.2008.07.013
Michau, 2017
Blanton, 2013, Characterization of X-ray irradiated graphene oxide coatings using X-ray diffraction, X-ray photoelectron spectroscopy, and atomic force microscopy, Powder Diffract., 28, 68, 10.1017/S0885715613000109
Bui, 2013, Graphene-Cr-Graphene intercalation nanostructures: stability and magnetic properties from density functional theory investigations, J. Phys. Chem. C, 117, 3605, 10.1021/jp310806a
Sarkar, 2011, Organometallic chemistry of extended periodic π-electron systems: hexahapto-chromium complexes of graphene and single-walled carbon nanotubes, Chem. Sci., 2, 1326, 10.1039/c0sc00634c
Iliev, 1999, Raman spectroscopy of ferromagnetic CrO2, Phys. Rev. B, 60, 33, 10.1103/PhysRevB.60.33
Yu, 2003, Phase control of chromium oxide in selective microregions by laser annealing, J. Appl. Phys., 93, 3951, 10.1063/1.1558204
Barshilia, 2008, Structure and optical properties of pulsed sputter deposited CrxOy/Cr/Cr2O3 solar selective coatings, J. Appl. Phys., 103, 10.1063/1.2831364
Ferrari, 2004, Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond, Philos. Trans. R. Soc. Lond. A, 362, 2477, 10.1098/rsta.2004.1452
Chu, 2006, Characterization of amorphous and nanocrystalline carbon films, Mater. Chem. Phys., 96, 253, 10.1016/j.matchemphys.2005.07.048
Cançado, 2011, Quantifying defects in graphene via Raman spectroscopy at different excitation energies, Nano Lett., 11, 3190, 10.1021/nl201432g
Aleksandrov, 2002, Vapor-phase deposition of coatings from bis-arene chromium compounds on aluminum alloys, Met. Sci. Heat Treat., 44, 160, 10.1023/A:1019638724753
Yurshev, 2015, Surface hardening of tools by depositing a pyrolytic chromium carbide coating, Met. Sci. Heat Treat., 57, 107, 10.1007/s11041-015-9845-y
Zeng, 2006, Tribological and electrochemical behavior of thick Cr–C alloy coatings electrodeposited in trivalent chromium bath as an alternative to conventional Cr coatings, Electrochim. Acta, 52, 1366, 10.1016/j.electacta.2006.07.038
Protsenko, 2012, Improving hardness and tribological characteristics of nanocrystalline Cr–C films obtained from Cr(III) plating bath using pulsed electrodeposition, Int. J. Refract. Met. Hard Mater., 31, 281, 10.1016/j.ijrmhm.2011.10.006
Lausmann, 1996, Electrolytically deposited hardchrome, Surf. Coat. Technol., 86-87, 814, 10.1016/S0257-8972(96)02973-8
Liang, 2013, Structure characterization and tribological properties of thick chromium coating electrodeposited from a Cr(III) electrolyte, Surf. Coat. Technol., 218, 23, 10.1016/j.surfcoat.2012.12.021
Aubert, 1985, Hard chrome and molybdenum coatings produced by physical vapour deposition, Thin Solid Films, 126, 61, 10.1016/0040-6090(85)90175-0
Cholvy, 1985, Characterization and wear resistance of coatings in the Cr-C-N ternary system deposited by physical vapour deposition, Thin Solid Films, 126, 51, 10.1016/0040-6090(85)90174-9
Wang, 1999, Synthesis of Cr3C2 coatings for tribological applications, Surf. Coat. Technol., 120-121, 622, 10.1016/S0257-8972(99)00430-2
Su, 2004, Effect of chromium content on the dry machining performance of magnetron sputtered CrxC coatings, Mater. Sci. Eng. A, 364, 188, 10.1016/j.msea.2003.08.010
Esteve, 2004, Cathodic chromium carbide coatings for molding die applications, Surf. Coat. Technol., 188-189, 506, 10.1016/j.surfcoat.2004.08.064
Romero, 2004, Nanometric chromium nitride/chromium carbide multilayers by R.F. magnetron sputtering, Surf. Coat. Technol., 180-181, 335, 10.1016/j.surfcoat.2003.10.082
Bryskin, 2014, CVD technology for preparing wear-resistive chromium carbide coatings of engine components, SAE Int. J. Mater. Manuf., 7, 630, 10.4271/2014-01-1020
Tsui, 1995, Nanoindentation and nanoscratching of hard carbon coatings for magnetic disks, 383, 447
Musil, 2001, Hard and superhard Zr–Ni–N nanocomposite films, Surf. Coat. Technol., 139, 101, 10.1016/S0257-8972(01)00989-6
Nowak, 2013, The effect of residual stresses on nanoindentation behavior of thin W-C based coatings, Powder Metall. Prog., 13, 132
Xiao, 2011, Mechanical properties and chemical bonding characteristics of Cr7C3 type multicomponent carbides, J. Appl. Phys., 109, 10.1063/1.3532038
Klein, 2000, How accurate are Stoney's equation and recent modifications, J. Appl. Phys., 88, 5487, 10.1063/1.1313776
Wu, 2014, Modified curvature method for residual thermal stress estimation in coatings, Surf. Eng., 20, 866, 10.1179/1743294414Y.0000000343
Bauer-Grosse, 2004, Thermal stability and crystallization studies of amorphous TM-C films, Thin Solid Films, 447-448, 311, 10.1016/S0040-6090(03)01108-8
Magnuson, 2012, Electronic structure and chemical bonding of amorphous chromium carbide thin films, J. Phys. Condens. Matter, 24, 225004, 10.1088/0953-8984/24/22/225004
Travkin, 1970, Thermal decomposition of bisarene compounds of chromium, Zh. Obshch. Khim., 40, 2677
Devyatykh, 1969, Composition of impurities in bis-ethylbenzene chromium produced according to the Friedel-Crafts method, Bull. Acad. Sci. USSR Div. Chem. Sci., 18, 207, 10.1007/BF00905519
Gribov, 1973, Super-pure materials from metal-organic compounds, Russ. Chem. Rev. (translated from Uspekhi Khimii), 42, 893, 10.1070/RC1973v042n11ABEH002773
Douard, 2006