Chromium carbide growth at low temperature by a highly efficient DLI-MOCVD process in effluent recycling mode

Surface and Coatings Technology - Tập 332 - Trang 96-104 - 2017
A. Michau1, F. Maury1, F. Schuster2, R. Boichot3, M. Pons3, E. Monsifrot4
1CIRIMAT, CNRS/INPT/UPS, 4 allée E. Monso, 31030 Toulouse cedex 4, France
2CEA Saclay, DFP/DPg, 91191 Gif Sur Yvette, France
3SIMAP, University Grenoble Alpes, CNRS, 38000 Grenoble, France
4Dephis, 74 rue Armand Japy, 25460 Etupes, France

Tài liệu tham khảo

Michau, 2017, Evidence for a Cr metastable phase as a tracer in DLI-MOCVD chromium hard coatings usable in high temperature environment, Appl. Surf. Sci., 422, 198, 10.1016/j.apsusc.2017.05.253 Liu, 2001, Recycling technique for CVD diamond coated cutting tools, Surf. Coat. Technol., 137, 246, 10.1016/S0257-8972(00)01081-1 Wang, 2011, Electrochemical delamination of CVD-grown graphene film: toward the recyclable use of copper catalyst, ACS Nano, 5, 9927, 10.1021/nn203700w Rees, 1996, Introduction, 1 Recycling International V. Revankar, S. Lahoti, CVD-Siemens reactor process hydrogen recycle system. US20150107298 A1, (2015). Lu, 2000, Economical deposition of a large area of high quality diamond film by a high power DC arc plasma jet operating in a gas recycling mode, Diam. Relat. Mater., 9, 1655, 10.1016/S0925-9635(00)00305-8 Noda, 2002, Closed recycle CVD process for mass production of SOG-Si from MG-Si, 308 Collingham, 1989, Effect of recycling on the axial distribution of coating thickness in a low pressure CVD reactor, J. Electrochem. Soc., 136, 787, 10.1149/1.2096745 Jensen, 1983, Modeling and analysis of low pressure CVD reactors, J. Electrochem. Soc., 130, 1950, 10.1149/1.2120129 Maury, 1996, Selection of metalorganic precursors for MOCVD of metallurgical coatings: application to Cr-based coatings, Surf. Coat. Technol., 86-87, 316, 10.1016/S0257-8972(96)03045-9 Jones, 1997 Kodas, 1994 Maury, 1992, Evaluation of tetra-alkylchromium precursors for OMCVD: I — films grown using Cr[CH2C(CH3)3]4, Thin Solid Films, 207, 82, 10.1016/0040-6090(92)90106-L Abisset, 1998, Low temperature MOCVD of V-C-N coatings using bis(arene)vanadium as precursors, Surf. Coat. Technol., 108-109, 200, 10.1016/S0257-8972(98)00619-7 W. Hafner, E.O. Fischer, British Patent 976 573, Nov. 25, 1964. Anantha, 1971, Chromium deposition from dicumene-chromium to form metal-semiconductor devices, J. Electrochem. Soc., 118, 163, 10.1149/1.2407936 Maury, 1990, Structural characterization of chromium carbide coatings deposited at low temperature by LPCVD process using dicumene chromium, Surf. Coat. Technol., 41, 51, 10.1016/0257-8972(90)90129-Z Schuster, 1990, Influence of organochromium precursor chemistry on the microstructure of MOCVD chromium carbide coatings, Surf. Coat. Technol., 43-44, 185, 10.1016/0257-8972(90)90073-L Polikarpov, 1983, Chromium films obtained by pyrolysis of chromium bisarene complexes in the presence of chlorinated hydrocarbons, Izv. Akad. Nauk SSSR, 20, 1839 T.P. Whaley, V. Norman, Carbonaceous solid bodies and processes for their manufacture, US Patent 3 252 824, May 24, 1966. Schuster, 1991, Characterization of chromium nitride and carbonitride coatings deposited at low temperature by OMCVD, Surf. Coat. Technol., 46, 275, 10.1016/0257-8972(91)90170-2 Maury, 1999, Low temperature MOCVD routes to chromium metal thin films using bis(benzene)chromium, J. Electrochem. Soc., 146, 3716, 10.1149/1.1392539 Luzin, 1988, Chromium films produced by pyrolysis of its bis-arene complexes in the presence of sulfur-containing additives, Zh. Prikl. Khim., 61, 1235 Maury, 2009, Multilayer chromium based coatings grown by atmospheric pressure direct liquid injection CVD, Surf. Coat. Technol., 204, 983, 10.1016/j.surfcoat.2009.04.020 Drozda, 1996, Tool and manufacturing engineers handbook, vol. 8 Bryskin, 2013, Innovative processing technology of chromium carbide coating to apprise performance of piston rings, SAE Int. J. Mater. Manuf., 6, 131, 10.4271/2012-01-2327 Vahlas, 1998, A thermodynamic approach to the chemical vapor deposition of chromium and of chromium carbides starting from Cr(C6H6)2, Chem. Vap. Depos., 4, 69, 10.1002/(SICI)1521-3862(199803)04:02<69::AID-CVDE69>3.3.CO;2-7 Douard, 2008, Thermodynamic simulation of Atmospheric DLI-CVD processes for the growth of chromium based hard coatings using bis(benzene)chromium as molecular source, Surf. Coat. Technol., 203, 516, 10.1016/j.surfcoat.2008.07.013 Michau, 2017 Blanton, 2013, Characterization of X-ray irradiated graphene oxide coatings using X-ray diffraction, X-ray photoelectron spectroscopy, and atomic force microscopy, Powder Diffract., 28, 68, 10.1017/S0885715613000109 Bui, 2013, Graphene-Cr-Graphene intercalation nanostructures: stability and magnetic properties from density functional theory investigations, J. Phys. Chem. C, 117, 3605, 10.1021/jp310806a Sarkar, 2011, Organometallic chemistry of extended periodic π-electron systems: hexahapto-chromium complexes of graphene and single-walled carbon nanotubes, Chem. Sci., 2, 1326, 10.1039/c0sc00634c Iliev, 1999, Raman spectroscopy of ferromagnetic CrO2, Phys. Rev. B, 60, 33, 10.1103/PhysRevB.60.33 Yu, 2003, Phase control of chromium oxide in selective microregions by laser annealing, J. Appl. Phys., 93, 3951, 10.1063/1.1558204 Barshilia, 2008, Structure and optical properties of pulsed sputter deposited CrxOy/Cr/Cr2O3 solar selective coatings, J. Appl. Phys., 103, 10.1063/1.2831364 Ferrari, 2004, Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond, Philos. Trans. R. Soc. Lond. A, 362, 2477, 10.1098/rsta.2004.1452 Chu, 2006, Characterization of amorphous and nanocrystalline carbon films, Mater. Chem. Phys., 96, 253, 10.1016/j.matchemphys.2005.07.048 Cançado, 2011, Quantifying defects in graphene via Raman spectroscopy at different excitation energies, Nano Lett., 11, 3190, 10.1021/nl201432g Aleksandrov, 2002, Vapor-phase deposition of coatings from bis-arene chromium compounds on aluminum alloys, Met. Sci. Heat Treat., 44, 160, 10.1023/A:1019638724753 Yurshev, 2015, Surface hardening of tools by depositing a pyrolytic chromium carbide coating, Met. Sci. Heat Treat., 57, 107, 10.1007/s11041-015-9845-y Zeng, 2006, Tribological and electrochemical behavior of thick Cr–C alloy coatings electrodeposited in trivalent chromium bath as an alternative to conventional Cr coatings, Electrochim. Acta, 52, 1366, 10.1016/j.electacta.2006.07.038 Protsenko, 2012, Improving hardness and tribological characteristics of nanocrystalline Cr–C films obtained from Cr(III) plating bath using pulsed electrodeposition, Int. J. Refract. Met. Hard Mater., 31, 281, 10.1016/j.ijrmhm.2011.10.006 Lausmann, 1996, Electrolytically deposited hardchrome, Surf. Coat. Technol., 86-87, 814, 10.1016/S0257-8972(96)02973-8 Liang, 2013, Structure characterization and tribological properties of thick chromium coating electrodeposited from a Cr(III) electrolyte, Surf. Coat. Technol., 218, 23, 10.1016/j.surfcoat.2012.12.021 Aubert, 1985, Hard chrome and molybdenum coatings produced by physical vapour deposition, Thin Solid Films, 126, 61, 10.1016/0040-6090(85)90175-0 Cholvy, 1985, Characterization and wear resistance of coatings in the Cr-C-N ternary system deposited by physical vapour deposition, Thin Solid Films, 126, 51, 10.1016/0040-6090(85)90174-9 Wang, 1999, Synthesis of Cr3C2 coatings for tribological applications, Surf. Coat. Technol., 120-121, 622, 10.1016/S0257-8972(99)00430-2 Su, 2004, Effect of chromium content on the dry machining performance of magnetron sputtered CrxC coatings, Mater. Sci. Eng. A, 364, 188, 10.1016/j.msea.2003.08.010 Esteve, 2004, Cathodic chromium carbide coatings for molding die applications, Surf. Coat. Technol., 188-189, 506, 10.1016/j.surfcoat.2004.08.064 Romero, 2004, Nanometric chromium nitride/chromium carbide multilayers by R.F. magnetron sputtering, Surf. Coat. Technol., 180-181, 335, 10.1016/j.surfcoat.2003.10.082 Bryskin, 2014, CVD technology for preparing wear-resistive chromium carbide coatings of engine components, SAE Int. J. Mater. Manuf., 7, 630, 10.4271/2014-01-1020 Tsui, 1995, Nanoindentation and nanoscratching of hard carbon coatings for magnetic disks, 383, 447 Musil, 2001, Hard and superhard Zr–Ni–N nanocomposite films, Surf. Coat. Technol., 139, 101, 10.1016/S0257-8972(01)00989-6 Nowak, 2013, The effect of residual stresses on nanoindentation behavior of thin W-C based coatings, Powder Metall. Prog., 13, 132 Xiao, 2011, Mechanical properties and chemical bonding characteristics of Cr7C3 type multicomponent carbides, J. Appl. Phys., 109, 10.1063/1.3532038 Klein, 2000, How accurate are Stoney's equation and recent modifications, J. Appl. Phys., 88, 5487, 10.1063/1.1313776 Wu, 2014, Modified curvature method for residual thermal stress estimation in coatings, Surf. Eng., 20, 866, 10.1179/1743294414Y.0000000343 Bauer-Grosse, 2004, Thermal stability and crystallization studies of amorphous TM-C films, Thin Solid Films, 447-448, 311, 10.1016/S0040-6090(03)01108-8 Magnuson, 2012, Electronic structure and chemical bonding of amorphous chromium carbide thin films, J. Phys. Condens. Matter, 24, 225004, 10.1088/0953-8984/24/22/225004 Travkin, 1970, Thermal decomposition of bisarene compounds of chromium, Zh. Obshch. Khim., 40, 2677 Devyatykh, 1969, Composition of impurities in bis-ethylbenzene chromium produced according to the Friedel-Crafts method, Bull. Acad. Sci. USSR Div. Chem. Sci., 18, 207, 10.1007/BF00905519 Gribov, 1973, Super-pure materials from metal-organic compounds, Russ. Chem. Rev. (translated from Uspekhi Khimii), 42, 893, 10.1070/RC1973v042n11ABEH002773 Douard, 2006