Christoffel functions, orthogonal polynomials, and Nevai's conjecture for Freud weights
Tóm tắt
Từ khóa
Tài liệu tham khảo
W. C. Bauldry (1990):Estimates of asymmetric Freud polynomials on the real line. J. Approx. Theory,63:225?237.
S. S. Bonan (1983):Applications of G. Freud's theory I. In: Approximation Theory IV (C. K. Chui, L. L. Schumaker, J. D. Ward, eds.). New York: Academic Press, pp. 347?351.
S. S. Bonan, D. S. Clark (1990):Estimates of the Hermite and the Freud polynomials. J. Approx. Theory,63:210?224.
J. Clunie, T. Kövari (1968):On integral functions having prescribed asymptotic growth II. Canad. J. Math.,20:7?20.
G. Freud (1977):On estimations of the greatest zeros of orthogonal polynomials. Acta Math. Acad. Sci. Hungar.,25:99?107.
G. Freud (1977):On Markov-Bernstein type inequalities and their applications. J. Approx. Theory,19:22?37.
G. Freud, A. Giroux, Q. I. Rahman (1978):On approximation by polynomials with weight exp(-|x|). Canad. J. Math.,30:358?372 (in French).
T. Ganelius (1976):Rational approximation in the complex plane and on the line. Ann. Acad. Sci. Fenn.,2:129?145.
A. Knopfmacher, D. S. Lubinsky (1987):Mean convergence of Lagrange interpolation for Freud's weights with application to product integration rules. J. Comput. Appl. Math.,17:79?103.
A. L. Levin, D. S. Lubinsky (1987):Canonical products and the weights exp(-|x|?), ?>1,with applications. J. Approx. Theory,49:149?169.
A. L. Levin, D. S. Lubinsky (1987):Weights on the real line that admit good relative polynomial approximation, with applications. J. Approx. Theory.,49:170?195.
A. L. Levin, D. S. Lubinsky (1990):L ? Markov and Bernstein inequalities for Freud weights. SIAM J. Math. Anal.,21:1065?1082.
D. S. Lubinsky (1986):Gaussian quadrature, weights on the whole real line, and even entive functions with non-negative even order derivatives. J. Approx. Theory,46:297?313.
D. S. Lubinsky (1989): Strong Asymptotics for Extremal Errors and Polynomials Associated with Erdös-Type Weights. Pitman Research Notes in Mathematics, vol. 202. Harlow, Essex: Longman.
D. S. Lubinsky, E. B. Saff (1988): Strong Asymptotics for Extremal polynomials Associated with Exponential Weights. Lecture Notes in Mathematics, vol. 1305. Berlin: Springer-Verlag.
A. Mate, P. Nevai, V. Totik (1986):Asymptotics for the zeros of orthogonal polynomials associated with infinite intervals. J. London Math. Soc.,33:303?310.
H. N. Mhaskar (1990):Bounds for certain Freud-type orthogonal polynomials. J. Approx. Theory,63:238?254.
H. N. Mhaskar, E. B. Saff (1984):Extremal Problems for Polynomials with Exponential Weights. Trans. Amer. Math. Soc.,285:203?234.
H. N. Mhaskar, E. B. Saff (1985):Where does the sup-norm of a weighted polynomial live? Constr. Approx.,1:71?91.
H. N. Mhaskar, E. B. Saff (1987):Where does the L p -norm of a weighted polynomial live? Trans. Amer. Math. Soc.,303:109?124.
P. Nevai (1976):Lagrange interpolation at the zeros of orthogonal polynomials. In: Approximation Theory II (G. G. Lorentz, C. K. Chui, and L. L. Schumaker, eds.). New York: Academic Press, pp. 163?201.
P. Nevai (1979): Orthogonal Polynomials. Memoirs of the American Mathematical Society, no. 213. Providence, RI: American Mathematical Society.
P. Nevai (1984):Asymptotics for orthogonal polynomials associated with exp(?x 4). SIAM J. Math. Anal.,15:1177?1187.
P. Nevai (1986):Geza Freud, orthogonal polynomials and Christoffel functions. A case study. J. Approx. Theory,48:3?167.
D. J. Newman, A. R. Reddy (1977):Rational approximation to |x|/(1+x 2m )on (??, ?). J. Approx. Theory,19:231?238.
E. A. Rahmanov (1984):On asymptotic properties of polynomials orthogonal on the real axis. Math. USSR-Sb.,47:155?193.
E. A. Rahmanov (1991):Strong asymptotics for orthogonal polynomials associated with exponential weights on?. Manuscript.
R. C. Sheen (1987):Plancherel-Rotach type asymptotics for orthogonal polynomials associated with exp(?x 6/6). J. Approx. Theory,50:232?293.
G. A. Szegö (1975). Orthogonal Polynomials, 4th edn. American Mathematical Society Colloquium Publications, vol. 23. Providence, RI: American Mathematical Society.