Choroidal vascular analysis in myopic eyes: evidence of foveal medium vessel layer thinning
Tóm tắt
To analyse morphologic features of the choroid in Non-pathological myopic eyes using spectral-domain (SD) optical coherence tomography (OCT). Retrospective analysis of enhanced depth SD-OCT images of Non-pathological myopic eyes in comparison with age-matched healthy controls was performed. Choroidal thickness (CT) and large choroidal vessel thickness (LCVT) were measured at the fovea, 750 µm nasally from fovea (N750) and 750 µm temporally (T750) from fovea. Medium choroidal vessel thickness (MCVT) was calculated by subtracting LCVT from CT. Choriocapillaris was encompassed by MCVT, given its reduced thickness. Linear regression analysis evaluated the relationship between age and axial with CT, LCVT and MCVT. The study group comprised 42 eyes of 31 patients (mean age 46.13 ± 15.63; 15 females). Control group included 57 eyes of 34 patients (mean age of 42.3 ± 15.29; 24 females). Mean axial length in myopic eyes and control group was 26.57 ± 1.27 and 23.59 ± 0.99 mm respectively. Myopic eyes showed significant thinning of MCVT and CT at all locations (p < 0.0001) compared to controls, unlike LCVT (p > 0.05). With each decade, thinning of up to 37 µm in CT was noted along with thinning of LCVT (up to 22.6 µm) and MCVT (up to 25 µm). Each mm increase in axial length caused 38.2 µm thinning of choroid along with LCVT (<10 µm), however, MCVT showed more notable thinning (>30 µm). Significant thinning of MCVT was noted in non-pathological myopic eyes in comparison to healthy subjects. It appears that MCVT has stronger relationship with age and axial length.
Tài liệu tham khảo
Fujiwara T, Imamura Y, Margolis R, Slakter JS, Spaide RF. Enhanced depth imaging optical coherence tomography of the choroid in highly myopic eyes. Am J Ophthalmol. 2009;148:445–50.
Ramrattan RS, van der Schaft TL, Mooy CM, de Bruijn WC, Mulder PG, de Jong PT. Morphometric analysis of Bruch’s membrane, the choriocapillaris, and the choroid in aging. Invest Ophthalmol Vis Sci. 1994;35:2857–64.
Grossniklaus HE, Green WR. Pathologic findings in pathologic myopia. Retina (Philadelphia, PA). 1992;12:127–33.
Okabe S, Matsuo N, Okamoto S, Kataoka H. Electron microscopic studies on retinochoroidal atrophy in the human eye. Acta Med Okayama. 1982;36:11–21.
Flores-Moreno I, Lugo F, Duker JS, Ruiz-Moreno JM. The relationship between axial length and choroidal thickness in eyes with high myopia. Am J Ophthalmol. 2013;155(2):314–9.
Llorente L, Barbero S, Cano D, Dorronsoro C, Marcos S. Myopic versus hyperopic eyes: axial length, corneal shape and optical aberrations. J Vis. 2004;4(4):5.
Branchini LA, Adhi M, Regatieri CV, Nandakumar N, Liu JJ, Laver N, Fujimoto JG, Duker JS. Analysis of choroidal morphologic features and vasculature in healthy eyes using spectral-domain optical coherence tomography. Ophthalmology. 2013;120:1901–8.
Moriyama M, Ohno-Matsui K, Futagami S, Yoshida T, Hayashi K, Shimada N, Kojima A, Tokoro T, Mochizuki M. Morphology and long-term changes of choroidal vascular structure in highly myopic eyes with and without posterior staphyloma. Ophthalmology. 2007;114:1755–62.
Quaranta M, Arnold J, Coscas G, Francais C, Quentel G, Kuhn D, Soubrane G. Indocyanine green angiographic features of pathologic myopia. Am J Ophthalmol. 1996;122:663–71.
Shih YF, Fitzgerald ME, Norton TT, Gamlin PD, Hodos W, Reiner A. Reduction in choroidal blood flow occurs in chicks wearing goggles that induce eye growth toward myopia. Curr Eye Res. 1993;12:219–27.
Ikuno Y, Fujimoto S, Jo Y, Asai T, Nishida K. Choroidal thinning in high myopia measured by optical coherence tomography. Clin Ophthalmol. 2013;7:889–93.
Hirata A, Negi A. Morphological changes of choriocapillaris in experimentally induced chick myopia. Graefes Arch Clin Exp Ophthalmol. 1998;236:132–7.
Junghans BM, Crewther SG, Liang H, Crewther DP. A role for choroidal lymphatics during recovery from form deprivation myopia? Optom Vis Sci. 1999;76:796–803.
Cheng HM, Singh OS, Kwong KK, Xiong J, Woods BT, Brady TJ. Shape of the myopic eye as seen with high-resolution magnetic resonance imaging. Optom Vis Sci. 1992;69:698–701.
Luu CD, Lau AM, Lee SY. Multifocal electroretinogram in adults and children with myopia. Arch Ophthalmol. 2006;124:328–34.
El Matri L, Bouladi M, Chebil A, Kort F, Bouraoui R, Largueche L, Mghaieth F. Choroidal thickness measurement in highly myopic eyes using SD-OCT. Ophthalmic Surg Lasers Imaging. 2012;43:S38–43.
Cicinelli MV, Pierro L, Gagliardi M, Bandello F. Optical coherence tomography and pathological myopia: an update of the literature. Int Ophthalmol. 2015;35:897–902.
Koizumi H, Kano M, Yamamoto A, Saito M, Maruko I, Sekiryu T, Okada AA, Iida T. Subfoveal choroidal thickness during aflibercept therapy for neovascular age-related macular degeneration: twelve-month results. Ophthalmology. 2016;123:617–24.
Ho M, Liu DT, Chan VC, Lam DS. Choroidal thickness measurement in myopic eyes by enhanced depth optical coherence tomography. Ophthalmology. 2013;120:1909–14.
Friedman E. The role of the atherosclerotic process in the pathogenesis of age-related macular degeneration. Am J Ophthalmol. 2000;130:658–63.
Gijsen F, van der Giessen A, van der Steen A, Wentzel J. Shear stress and advanced atherosclerosis in human coronary arteries. J Biomech. 2013;46:240–7.
Ku DN, Giddens DP, Zarins CK, Glagov S. Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress. Arteriosclerosis. 1985;5:293–302.
Huo Y, Linares CO, Kassab GS. Capillary perfusion and wall shear stress are restored in the coronary circulation of hypertrophic right ventricle. Circ Res. 2007;100:273–83.
Samady H, Eshtehardi P, McDaniel MC, Suo J, Dhawan SS, Maynard C, Timmins LH, Quyyumi AA, Giddens DP. Coronary artery wall shear stress is associated with progression and transformation of atherosclerotic plaque and arterial remodeling in patients with coronary artery disease. Circulation. 2011;124:779–88.
Yang YS, Koh JW. Choroidal blood flow change in eyes with high myopia. Korean J Ophthalmol. 2015;29:309–14.
Tan CS, Ouyang Y, Ruiz H, Sadda SR. Diurnal variation of choroidal thickness in normal, healthy subjects measured by spectral domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2012;53:261–6.
Toyokawa N, Kimura H, Fukomoto A, Kuroda S. Difference in morning and evening choroidal thickness in Japanese subjects with no chorioretinal disease. Ophthalmic Surg Lasers Imaging. 2012;43:109–14.
Usui S, Ikuno Y, Akiba M, Maruko I, Sekiryu T, Nishida K, Iida T. Circadian changes in subfoveal choroidal thickness and the relationship with circulatory factors in healthy subjects. Invest Ophthalmol Vis Sci. 2012;53:2300–7.