Choroidal thickness in older patients with central serous chorioretinopathy

Caio V. Regatieri1,2, Eduardo A. Novais1,2, Lauren Branchini1, Mehreen Adhi1, Emily D. Cole1, Ricardo Louzada1,3, Mark Lane1,4, Elias Reichel1, Jay S. Duker1
1New England Eye Center, Tufts Medical Center, Boston, USA
2Department of Ophthalmology, Federal University of São Paulo, São Paulo, Brazil
3Department of Ophthalmology, Federal University of Goiás, Goiânia, Brazil
4Queen Elizabeth Hospital Birmingham, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK

Tóm tắt

To investigate the choroidal thickness in older patients with central serous chorioretinopathy (CSCR) compared to age-matched normal subjects. Fifteen patients (30 eyes) with CSCR, all aged ≥60 years, and 21 age-matched normal subjects (21 eyes) underwent high-definition raster scanning using SD-OCT. Both eyes from CSCR patients were included in the analysis. The eyes in patients with CSCR were divided into two groups: active CSCR (17 eyes) if there was foveal-involving subretinal fluid and inactive contralateral eye group (13 eyes). Choroidal thickness was measured from the posterior edge of the retinal pigment epithelium to the choroidal–scleral junction at 500 µm intervals up to 2500 µm temporal and nasal to the fovea (11 locations). The mean age of the patients with CSCR was 68.87 ± 6.83 years (mean ± standard deviation). Reliable measurements of choroidal thickness were obtainable in 70.6 % of eyes examined. The choroid was statistically significantly thicker in eyes with both active CSCR (P < 0.001) and inactive contralateral eyes (P < 0.01) when compared to normal age-matched eyes. The subfoveal choroid was 95 µm (P < 0.01) thicker in eyes with active CSCR (338.05 ± 31.42 µm) compared with normal eyes (243.05 ± 13.39 µm). The subfoveal choroid thickness in the inactive contralateral eyes was numerically greater than normal, and it was not statistically significantly thicker compared to the normal eyes (difference—55.68 µm, P > 0.05). Choroid in older patients with active CSCR was thicker than the choroid in age-matched normal eyes. It is important to consider CSCR as a differential diagnosis of serous retinal detachment in elderly patients with thickened choroid and to consider SD-OCT as an imaging modality by which to evaluate the choroidal thickness.

Tài liệu tham khảo

Hussain D, Gass JD. Idiopathic central serous chorioretinopathy. Indian J Ophthalmol. 1998;46(3):131–7. Gemenetzi M, De Salvo G, Lotery AJ. Central serous chorioretinopathy: an update on pathogenesis and treatment. Eye (Lond). 2010;24(12):1743–56. Guyer DR, Yannuzzi LA, Slakter JS, Sorenson JA, Ho A, Orlock D. Digital indocyanine green videoangiography of central serous chorioretinopathy. Arch Ophthalmol. 1994;112(8):1057–62. Piccolino FC, Borgia L, Zinicola E, Zingirian M. Indocyanine green angiographic findings in central serous chorioretinopathy. Eye (Lond). 1995;9(Pt 3):324–32. Kuroda S, Ikuno Y, Yasuno Y, et al. Choroidal thickness in central serous chorioretinopathy. Retina. 2013;33(2):302–8. Manjunath V, Fujimoto JG, Duker JS. Cirrus HD-OCT high definition imaging is another tool available for visualization of the choroid and provides agreement with the finding that the choroidal thickness is increased in central serous chorioretinopathy in comparison to normal eyes. Retina. 2010;30(8):1320–1 (author reply 1321–1322). Imamura Y, Fujiwara T, Margolis R, Spaide RF. Enhanced depth imaging optical coherence tomography of the choroid in central serous chorioretinopathy. Retina. 2009;29(10):1469–73. Schatz H, Madeira D, Johnson RN, McDonald HR. Central serous chorioretinopathy occurring in patients 60 years of age and older. Ophthalmology. 1992;99(1):63–7. Spaide RF, Campeas L, Haas A, et al. Central serous chorioretinopathy in younger and older adults. Ophthalmology. 1996;103(12):2070–9 (discussion 2079–2080). Berger AR, Olk RJ, Burgess D. Central serous choroidopathy in patients over 50 years of age. Ophthalmic Surg. 1991;22(10):583–90. Hikichi T, Ohtsuka H, Higuchi M, et al. Causes of macular serous retinal detachments in Japanese patients 40 years and older. Retina. 2009;29(3):395–404. Spaide RF, Hall L, Haas A, et al. Indocyanine green videoangiography of older patients with central serous chorioretinopathy. Retina. 1996;16(3):203–13. Yannuzzi LA, Freund KB, Goldbaum M, et al. Polypoidal choroidal vasculopathy masquerading as central serous chorioretinopathy. Ophthalmology. 2000;107(4):767–77. Novais EA, Ferrara D, Waheed NK. Optical coherence tomography in polypoidal choroidal vasculopathy disease. Clin Exp Ophthalmol. 2015;43(9):779–81. Gallego-Pinazo R, Dolz-Marco R, Gomez-Ulla F, Mrejen S, Freund KB. Pachychoroid diseases of the macula. Med Hypothesis Discov Innov Ophthalmol. 2014;3(4):111–5. Spaide RF, Koizumi H, Pozzoni MC. Enhanced depth imaging spectral-domain optical coherence tomography. Am J Ophthalmol. 2008;146(4):496–500. Margolis R, Spaide RF. A pilot study of enhanced depth imaging optical coherence tomography of the choroid in normal eyes. Am J Ophthalmol. 2009;147(5):811–5. Ikuno Y, Kawaguchi K, Nouchi T, Yasuno Y. Choroidal thickness in healthy Japanese subjects. Invest Ophthalmol Vis Sci. 2010;51(4):2173–6. Manjunath V, Taha M, Fujimoto JG, Duker JS. Choroidal thickness in normal eyes measured using Cirrus HD optical coherence tomography. Am J Ophthalmol. 2010;150(3):325–329.e321. Kitzmann AS, Pulido JS, Diehl NN, Hodge DO, Burke JP. The incidence of central serous chorioretinopathy in Olmsted County, Minnesota, 1980–2002. Ophthalmology. 2008;115(1):169–73. Negi A, Marmor MF. Experimental serous retinal detachment and focal pigment epithelial damage. Arch Ophthalmol. 1984;102(3):445–9. Chung YR, Kim JW, Kim SW, Lee K. Choroidal thickness in patients with central serous chorioretinopathy: Assessment of Haller and Sattler Layers. Retina. 2016;36(9):1652–7. Koizumi H, Yamagishi T, Yamazaki T, Kawasaki R, Kinoshita S. Subfoveal choroidal thickness in typical age-related macular degeneration and polypoidal choroidal vasculopathy. Graefes Arch Clin Exp Ophthalmol. 2011;249(8):1123–8. Kim SW, Oh J, Kwon SS, Yoo J, Huh K. Comparison of choroidal thickness among patients with healthy eyes, early age-related maculopathy, neovascular age-related macular degeneration, central serous chorioretinopathy, and polypoidal choroidal vasculopathy. Retina. 2011;31(9):1904–11. Ding X, Li J, Zeng J, et al. Choroidal thickness in healthy Chinese subjects. Invest Ophthalmol Vis Sci. 2011;52(13):9555–60. Manjunath V, Goren J, Fujimoto JG, Duker JS. Analysis of choroidal thickness in age-related macular degeneration using spectral-domain optical coherence tomography. Am J Ophthalmol. 2011;152(4):663–8. Chung SE, Kang SW, Lee JH, Kim YT. Choroidal thickness in polypoidal choroidal vasculopathy and exudative age-related macular degeneration. Ophthalmology. 2011;118(5):840–5. Dansingani KK, Balaratnasingam C, Naysan J, Freund KB. En face imaging of pachychoroid spectrum disorders with swept-source optical coherence tomography. Retina. 2016;36(3):499–516. Lehmann M, Bousquet E, Beydoun T, Behar-Cohen F. Pachychoroid: an inherited condition? Retina. 2015;35(1):10–6. Seidel G, Hausberger S, Herzog SA, et al. Circadian macular volume changes in the healthy human choroid. Am J Ophthalmol. 2015;159(2):365–371.e362. Zhao M, Yang XF, Jiao X, et al. The diurnal variation pattern of choroidal thickness in macular region of young healthy female individuals using spectral domain optical coherence tomography. Int J Ophthalmol. 2016;9(4):561–6. Kinoshita T, Mitamura Y, Shinomiya K, et al. Diurnal variations in luminal and stromal areas of choroid in normal eyes. Br J Ophthalmol. 2016;1–5. doi:10.1136/bjophthalmol-2016-308594.