Chordal embeddings of planar graphs
Tài liệu tham khảo
Arnborg, 1987, Complexity of finding embeddings in a k-tree, SIAM J. Algebraic Discrete Methods, 8, 277, 10.1137/0608024
Bodlaender, 1995, Treewidth and pathwidth of permutation graphs, SIAM J. Discrete Math., 8, 606, 10.1137/S089548019223992X
Bouchitté, 2001, Treewidth and minimum fill-in, SIAM J. Comput., 31, 212, 10.1137/S0097539799359683
Bouchitté, 2002, Listing all potential maximal cliques of a graph, Theoret. Comput. Sci., 276, 17, 10.1016/S0304-3975(01)00007-X
Diestel, 1997
Eppstein, 1999, Subgraph isomorphism in planar graphs and related problems, J. Graph Algorithms Appl., 3, 1, 10.7155/jgaa.00014
Golumbic, 1980
T. Kloks, Treewidth of circle graphs, in: Proceedings of the Fourth Annual International Symposium on Algorithms and Computation (ISAAC’93), Lecture Notes in Computer Science, Vol. 762, Springer, Berlin, 1993, pp. 108–117.
Kloks, 1995, Treewidth of chordal bipartite graphs, J. Algorithms, 19, 266, 10.1006/jagm.1995.1037
T. Kloks, D. Kratsch, H. Müller, Approximating the bandwidth for asteroidal triple-free graphs, in: Proceedings of the Third Annual European Symposium on Algorithms (ESA’95), Lecture Notes in Computer Science, Vol. 979, Springer, Berlin, 1995, pp. 434–447.
D. Lapoire, Treewidth and duality in planar hypergraphs. http://dept-info.labri.u-bordeaux.fr/~lapoire/papers/dual_planar_treewidth.ps.
Parra, 1997, Characterizations and algorithmic applications of chordal graph embeddings, Discrete Appl. Math., 79, 171, 10.1016/S0166-218X(97)00041-3
Robertson, 1984, Graphs minors. III. Planar tree-width, J. Combin. Theory Ser. B, 36, 49, 10.1016/0095-8956(84)90013-3
Robertson, 1986, Graphs minors. II. Algorithmic aspects of tree-width, J. Algorithms, 7, 309, 10.1016/0196-6774(86)90023-4
Seymour, 1994, Call routing and the ratcatcher, Combinatorica, 14, 217, 10.1007/BF01215352
Sundaram, 1994, Treewidth of circular-arc graphs, SIAM J. Discrete Math., 7, 647, 10.1137/S0895480191193789