Choquet-based fuzzy rough sets
Tài liệu tham khảo
Pawlak, 1982, Rough sets, Int. J. Comput. Inf. Sci., 11, 341, 10.1007/BF01001956
Dubois, 1990, Rough fuzzy sets and fuzzy rough sets, Int. J. Gen. Syst., 17, 191, 10.1080/03081079008935107
Vluymans, 2015, Applications of fuzzy rough set theory in machine learning: a survey, Fundam. Inform., 142, 53, 10.3233/FI-2015-1284
Cornelis, 2007, Vaguely quantified rough sets, 87
Fernández Salido, 2003, On β-precision aggregation, Fuzzy Sets Syst., 139, 547, 10.1016/S0165-0114(03)00003-4
Fernández Salido, 2003, Rough set analysis of a general type of fuzzy data using transitive aggregations of fuzzy similarity relations, Fuzzy Sets Syst., 139, 635, 10.1016/S0165-0114(03)00124-6
Mieszkowicz-Rolka, 2004, Variable precision fuzzy rough sets, 144
Yao, 2014, A novel variable precision (θ,σ)-fuzzy rough set model based on fuzzy granules, Fuzzy Sets Syst., 236, 58, 10.1016/j.fss.2013.06.012
Hu, 2010, Soft fuzzy rough sets for robust feature evaluation and selection, Inf. Sci., 180, 4384, 10.1016/j.ins.2010.07.010
Hadrani, 2020, Fuzzy rough sets: survey and proposal of an enhanced knowledge representation model based on automatic noisy sample detection, Cogn. Syst. Res., 64, 37, 10.1016/j.cogsys.2020.05.001
An, 2016, Data-distribution-aware fuzzy rough set model and its application to robust classification, IEEE Trans. Cybern., 46, 3073
An, 2021, Probability granular distance-based fuzzy rough set model, Appl. Soft Comput., 102, 10.1016/j.asoc.2020.107064
Cornelis, 2010, Ordered weighted average based fuzzy rough sets, 78
Grabisch, 2010, A decade of application of the Choquet and Sugeno integrals in multi-criteria decision aid, Ann. Oper. Res., 175, 247, 10.1007/s10479-009-0655-8
Kriegel, 2011, Interpreting and unifying outlier scores, 13
Zadeh, 1965, Fuzzy sets, Inf. Control, 10.1016/S0019-9958(65)90241-X
Radzikowska, 2002, A comparative study of fuzzy rough sets, Fuzzy Sets Syst., 126, 137, 10.1016/S0165-0114(01)00032-X
D'eer, 2015, A comprehensive study of implicator–conjunctor-based and noise-tolerant fuzzy rough sets: definitions, properties and robustness analysis, Fuzzy Sets Syst., 275, 1, 10.1016/j.fss.2014.11.018
Yager, 1988, On ordered weighted averaging aggregation operators in multicriteria decisionmaking, IEEE Trans. Syst. Man Cybern., 18, 183, 10.1109/21.87068
Beliakov, 2007
Wang, 2010
Zadeh, 1983, A computational approach to fuzzy quantifiers in natural languages, 149
Yager, 1996, Quantifier guided aggregation using OWA operators, Int. J. Intell. Syst., 11, 49, 10.1002/(SICI)1098-111X(199601)11:1<49::AID-INT3>3.0.CO;2-Z
Vluymans, 2019
Torra, 1997, The weighted OWA operator, Int. J. Intell. Syst., 12, 153, 10.1002/(SICI)1098-111X(199702)12:2<153::AID-INT3>3.0.CO;2-P
Torra, 1998, On some relationships between the WOWA operator and the Choquet integral, 818
Miranda, 2002, p-symmetric fuzzy measures, Int. J. Uncertain. Fuzziness Knowl.-Based Syst., 10, 105, 10.1142/S0218488502001867
Vluymans, 2019, Weight selection strategies for ordered weighted average based fuzzy rough sets, Inf. Sci., 501, 155, 10.1016/j.ins.2019.05.085
Zhao, 2019, Pyod: a Python toolbox for scalable outlier detection, J. Mach. Learn. Res., 20, 1
Dua