Choosing Methods for Deposition of a Thermal-Spray Functional Coating onto a Group of Parts under Small-Batch Manufacturing

Journal of Machinery Manufacture and Reliability - Tập 51 - Trang 245-252 - 2022
A. S. Krasko1,2
1Bauman Moscow State Technical University, Moscow, Russia
2Russian Technological University (MIREA), Moscow, Russia

Tóm tắt

The problem of increasing the efficiency of design-and-technological solutions in manufacturing small-scale production parts, characterized by different design and technological features, as well as by small batches, is considered. A methodology is proposed for choosing methods for thermal spraying of functional coatings taking into account the features of manufacturing parts under the conditions of small-scale production to provide the greatest economic efficiency.

Tài liệu tham khảo

Kovalev, A.A. and Krasko, A.S., Prospects for reducing the complexity of manufacturing machines through the use of functional coatings, Mekhanika i mashinostroenie. Nauka i praktika (Mechanics and Machinery Manufacture: Science and Practice), Zhukov, I.A., Ed., St. Petersburg, 2020, pp. 27–30. https://doi.org/10.26160/2658-6185-2020-3-27-30 Kovalev, A.A. and Krasko, A.S., Prospects and problems of the application of supersonic plasma spraying in the conditions of small-batch production, Sovremennye materialy, tekhnika i tekhnologiya (Modern Materials, Technics, and Technology), Razumov, M.S., Ed., Kursk: Yugo-Zapadnyi Gos. Univ., 2020, pp. 174–177. https://doi.org/10.47581/2020/30.12.2020/MTO54.1.043 Albagachiev, A.Yu., Kovalev, A.A., and Krasko, A.S., Selection of a method for strengthening treatment of machine parts in the conditions of automated small-batch production, Probl. Mashinostr. Nadezhnosti Mash., 2021, no. 2, pp. 4–12. https://doi.org/10.52261/02346206_2021_2_4 Osipov, Yu.I., Ershov, A.A., and Osipov, A.Yu., Upravlenie kachestvom v mashinostroenii (Quality Management in Machinery Manufacture), Moscow: Nauka, 2009. Kravchenko, I.N., Karelina, M.Yu., Zubrilina, E.M., and Kolomeichenko, A.A., Resource-saving technologies of derivatization of functional nanostructured coatings by high-speed application methods, Vestn. Donskogo Gos. Tekh. Univ., 2015, vol. 15, no. 3, pp. 19–27. https://doi.org/10.12737/12590 Kalita, V.I. and Komlev, D.I., Plazmennye pokrytiya s nanokristallicheskoi i amorfnoi strukturoi (Plasma Coatings with Nanocrystalline and Amorphous Structure), Moscow: Lider M, 2008. Kudinov, V.V. and Bobrov, G.V., Nanesenie pokrytii napyleniem. Teoriya, tekhnologiya i oborudovanie. Uchebnik dlya vuzov (Coating Deposition by Spraying: Theory, Technology, and Equipment: Handbook for Universities), Moscow: Metallurgiya, 1992. Bobrov, G.V. and Il’in, A.A., Nanesenie neorganicheskikh pokrytii (Deposition of Inorganic Coatings), Moscow: Internet Inzhiniring, 2004. Puzryakov, A.F., Teoreticheskie osnovy tekhnologii plazmennogo napyleniya: Uchebnoe posobie po kursu Tekhnologiya konstruktsionnykh materialov (Theoretical Foundations of Plasma Coating: Handbook on the Course of Technology of Structural Materials), Moscow: Mosk. Gos. Tekh. Univ. im. Baumana, 2008, 2nd ed. Gazotermicheskoe napylenie. Uchebnoe posobie (Gas-Thermal Coating: Handbook), Baldaev, L.Kh, Ed., Moscow: Market DS, 2007. Il’yushenko, A.F., Shevtsov, A.I., Okovityi, V.A., and Gromyko, G.F., Protsessy formirovaniya gazotermicheskikh pokrytii i ikh modelirovanie (Processes of Generation of Gas-Thermal Coatings and Their Simulation), Minsk: Belarus. Navuka, 2011. Meghwal, A., Anupam, A., Murty, B.S., Berndt, C.C., Kottada, R.S., and Ang, A.S.M., Thermal spray high-entropy alloy coatings: A review, J. Therm. Spray Technol., 2020, vol. 29, pp. 857–893. https://doi.org/10.1007/s11666-020-01047-0 Mauer, G., Vaßen, R., and Stöver, D., Plasma and particle temperature measurements in thermal spray: approaches and applications, J. Therm. Spray Technol., 2011, vol. 20, pp. 391–406. https://doi.org/10.1007/s11666-010-9603-z Cui, Y., Guo, M., Wang, C., and Tang, Z., Adhesion enhancement of a metallic Al coating fabricated by detonation gun spray on a modified polymer matrix composite, J. Therm. Spray Technol., 2019, vol. 28, pp. 1730–1738. https://doi.org/10.1007/s11666-019-00916-7 Vignesh, S., Shanmugam, K., Balasubramanian, V., and Sridhar, K., Identifying the optimal HVOF spray parameters to attain minimum porosity and maximum hardness in iron based amorphous metallic coatings, Def. Technol., 2017, vol. 13, no. 2, pp. 101–110. https://doi.org/10.1016/j.dt.2017.03.001 Pulido-González, N., García-Rodríguez, S., Campo, M., Rams, J., Torres, B., Application of DOE and ANOVA in optimization of HVOF spraying parameters in the development of new Ti coatings, J. Therm. Spray Technol., 2020, vol. 29, pp. 384–399. https://doi.org/10.1007/s11666-020-00989-9 Butkevich, M.N., Oleinik, A.V., and Puzryakov, A.A., Methodology for choosing the optimal method of coating deposition, Teor. Prikl. Probl. Servisa, 2005, no. 4, pp. 17–23. Kartsev, S.V. and Shirshov, V.S., Choosing materials for deposition of coatings by plasma methods, Tekhnol. Mashinostr., 2012, no. 6, pp. 30–31. Amouei, A.M., Mirhosseini, G.R., Jafari, A., and Tarasov, A.I., The choice of protective coating application method, Nauchn. Vestn. Mosk. Gos. Tekh. Univ. Grazhdanskoi Aviatsii, 2016, no. 225, pp. 5–8. Selivanov, S.G. and Nurgaliev, A.A., Application of tools of artificial intelligence and methods of fuzzy logic for choosing the technologies of coating deposition, Svar. Proizvod., 2013, no. 5, pp. 30–34.