Chondrules as direct thermochemical sensors of solar protoplanetary disk gas

Science advances - Tập 4 Số 7 - 2018
G. Libourel1,2, Marc Portail3
1Hawai‘i Institute of Geophysics and Planetology, School of Ocean, Earth Science and Technology, University of Hawai‘i, Mānoa, Honolulu, HI 96821, USA.
2Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, UMR 7293 Lagrange, Boulevard de l’Observatoire, CS34229, 06304 Nice Cedex 4, France.
3Université Côte d’Azur, CNRS–Centre de Recherches sur l’Hétéro-Epitaxie et ses Applications), Sophia Antipolis, Rue Bernard Grégory, 06560 Valbonne, France.

Tóm tắt

Cathodoluminescence reveals structures indicative of gas-assisted epitaxial growth during chondrule melt crystallization.

Từ khóa


Tài liệu tham khảo

A. N. Krot E. R. D. Scott B. Reipurth Chondrites and the protoplanetary disk in Chondrites and the Protoplanetary Disk (Astronomical Society of the Pacific 2005) vol. 341 1029 pp.

10.1126/science.1173907

10.1126/science.1226919

10.1126/sciadv.1700407

10.1111/j.1945-5100.2012.01357.x

M. A. Morris, S. J. Weidenschilling, S. J. Desch, The effect of multiple particle sizes on cooling rates of chondrules produced in large-scale shocks in the solar nebula. Meteorit. Planet. Sci. 51, 870–883 (2016).

10.1038/nature14105

R. H. Jones J. Villeneuve G. Libourel Thermal histories of chondrules: Petrologic observations and experimental constraints in Chondrules and the Protoplanetary Disk S. S. Russell H. C. Connolly Jr. A. N. Krot Eds. (Cambridge University Press 2018).

A. J. Brearley, R. H. Jones, Chondrite thermal histories from low-Ca pyroxene microstructures: Autometamorphism versus prograde metamorphism revisited. Lunar Planet. Sci. XXIV, 185–186 (1993).

A. E. Rubin, Aluminian low-Ca pyroxene in a Ca-Al-rich chondrule from the Semarkona meteorite. Am. Mineral. 89, 867–872 (2004).

M. Uesugi, M. Sekiya, T. Nakamura, Kinetic stability of a melted iron globule during chondrule formation. I. Non-rotating model. Meteorit. Planet. Sci. 43, 717–730 (2008).

J. T. Wasson, A. E. Rubin, Metal in CR chondrites. Geochim. Cosmochim. Acta 74, 2212–2230 (2010).

E. J. Benstock, P. R. Buseck, I. M. Steele, Cathodoluminescence of meteoritic and synthetic forsterite at 296 and 77 K using TEM. Am. Mineral. 82, 310–315 (1997).

I. M. Steele, J. V. Smith, C. Sirikus, Cathodoluminescence zoning and minor elements in forsterites from the Murchison (C2) and Allende (CV3) carbonaceous chondrites. Nature 313, 294–297 (1985).

A. Gucsik, T. Endo, H. Nishido, K. Ninagawa, M. Kayama, S. Bérczi, S. Nagy, P. Ábrahám, Y. Kimura, H. Miura, I. Gyollai, I. Simonia, P. Rózsa, J. Posta, D. Apai, K. Mihályi, M. Nagy, U. Ott, Cathodoluminescence microscopy and spectroscopy of forsterite from Kaba meteorite: An application to the study of hydrothermal alteration of parent body. Meteorit. Planet. Sci. 48, 2577–2596 (2013).

A. Pack, H. Palme, Partitioning of Ca and Al between forsterite and silicate melt in dynamics systems with implications for the origin of Ca, Al-rich forsterites in primitive meteorites. Meteorit. Planet. Sci. 38, 1263–1281 (2003).

C. B. Agee, D. Walker, Aluminum partitioning between olivine and ultrabasic silicate liquid to 6 GPa. Contrib. Mineral. Petrol. 105, 243–254 (1990).

C. Ma, J. R. Beckett, H. C. Connolly Jr, G. R. Rossman, Aluminous spinels in ferromagnesian chondrules from Allende. Lunar Planet. Sci. XXXIX, abstract 2030 (2008).

C. Spandler, H. St. C. O’Neill, Diffusion and partition coefficients of minor and trace elements in San Carlos olivine at 1300°C with some geochemical implications. Contrib. Mineral. Petrol. 159, 791–818 (2010).

M. E. Varela, E. Zinner, Unraveling the role of liquids during chondrule formation processes. Geochim. Cosmochim. Acta 221, 358–378 (2018).

10.1016/j.epsl.2006.09.011

L. Tissandier, G. Libourel, F. Robert, Gas-melt interactions and their bearing on chondrule formation. Meteorit. Planet. Sci. 37, 1377–1389 (2002).

R. S. Wager, W. C. Ellis, Vapor-liquid-solid mechanism of single crystal growth. Appl. Phys. Lett. 4, 89 (1964).

E. Kuphal, Liquid phase epitaxy. Appl. Phys. A 52, 380–409 (1991).

H. J. Scheel Introduction to liquid phase epitaxy in Liquid Phase Epitaxy of Electronic Optical and Optoelectronic Materials P. Capper M. Mauk Eds. (John Wiley & Sons Ltd. 2007).

10.1016/0016-7037(77)90210-1

10.1126/science.1156561

J. F. Schairer, H. S. Yoder Jr, Crystallization in the system nepheline–forsterite silica at one atmosphere pressure. Carnegie Inst. Wash. Yrbk. 60, 141–144 (1961).

G. Lofgren, Dynamic crystallization of chondrule melts of porphyritic olivine composition: Textures experimental and natural. Geochim. Cosmochim. Acta 53, 461–470 (1989).

G. Lofgren, A. B. Lanier, Dynamic crystallization study of barred olivine chondrules. Geochim. Cosmochim. Acta 54, 3537–3551 (1990).

F. Faure, P. Schiano, G. Trolliard, C. Nicollet, B. Soulestin, Textural evolution of polyhedral olivine experiencing rapid cooling rates. Contrib. Mineral. Petrol. 153, 405–416 (2007).

B. Welsch, F. Faure, V. Famin, A. Baronnet, P. Bachèlery, Dendritic crystallization: A single process for all the textures of olivine in basalts? J. Petrol. 54, 539–574 (2013).

F. Faure, N. Arndt, G. Libourel, Formation of spinifex texture in komatiites: An experimental study. J. Petrol. 47, 1591–1610 (2006).

E. Bauer, Phaenomenologische theorie der kristallabscheidung an oberflächen. II. Z. Kristallogr. 110, 395–431 (1958).

H. Sorby, On the structure and origin of meteorites. Nature 15, 405–498 (1877).

E. Jacquet, O. Alard, M. Gounelle, Chondrule trace element geochemistry at the mineral scale. Meteorit. Planet. Sci. 47, 1695–1714 (2012).

H. Miura, T. Yamamoto, A new estimate of the chondrule cooling rate deduced from an analysis of compositional zoning of relict olivine. Astron. J. 147, 54 (2014).

10.1016/S0016-7037(02)01218-8

S. Tachibana, S. Tamada, H. Kawasaki, K. Ozawa, H. Nagahara, Interdiffusion of Mg–Fe in olivine at 1,400–1,600°C and 1 atm total pressure. Phys. Chem. Miner. 40, 511–519 (2013).

C. Soulié, G. Libourel, L. Tissandier, Olivine dissolution in molten silicates: An experimental study with application to chondrule formation. Meteorit. Planet. Sci. 52, 225–250 (2017).

10.1016/0016-7037(95)00214-K

10.1016/S0016-7037(99)00284-7

A. Galy, E. D. Young, R. D. Ash, R. K. O’Nions, The formation of chondrules at high gas pressures in the solar nebula. Science 290, 1751–1753 (2000).

10.1111/j.1945-5100.2011.01308.x

E. R. Harju Aqueous alteration and silicon and magnesium isotope measurements in CR and CV chondrites thesis University of California Los Angeles Los Angeles CA (2015).

10.1016/j.gca.2012.05.010

10.1016/j.gca.2012.10.034

C. P. Dullemond, S. M. Stammler, A. Johansen, Forming chondrules in impact splashes. I. Radiative cooling model. Astrophys. J. 794, 91 (2014).

10.1006/icar.1999.6245

10.1146/annurev-astro-081710-102548

L. A. Coogan, A. D. Saunders, R. N. Wilson, Aluminum-in-olivine thermometry of primitive basalts: Evidence of an anomalously hot mantle source for large igneous provinces. Chem. Geol. 368, 1–10 (2014).

A. D. Burhnam, H. St. C. O’Neill, Aluminum in olivine: Substitution mechanisms and implications for thermometry. Goldschmidt Conf. abstract 3511 (2016).

R. F. Cooper, D. L. Kohlstedt, Interfacial energies in the olivine-basalt system. Adv. Earth Planet. Sci. 91, 9315–9323 (1986).